Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import tensorflow as tf | |
| import cv2 | |
| title = "Welcome on your first sketch recognition app!" | |
| head = ( | |
| "<center>" | |
| "<img src='file/mnist-classes.png' width=400>" | |
| "The robot was trained to classify numbers (from 0 to 9). To test it, write your number in the space provided." | |
| "</center>" | |
| ) | |
| ref = "Find the whole code [here](https://github.com/ovh/ai-training-examples/tree/main/apps/gradio/sketch-recognition)." | |
| img_size = 28 | |
| labels = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"] | |
| model = tf.keras.models.load_model("model/sketch_recognition_numbers_model.h5") | |
| def predict(img): | |
| img = cv2.resize(img, (img_size, img_size)) | |
| img = img.reshape(1, img_size, img_size, 1) | |
| preds = model.predict(img)[0] | |
| return {label: float(pred) for label, pred in zip(labels, preds)} | |
| label = gr.outputs.Label(num_top_classes=3) | |
| def main(): | |
| interface = gr.Interface(fn=predict, inputs="sketchpad", outputs=label, title=title, description=head, article=ref) | |
| interface.launch(server_name="0.0.0.0", server_port=8080) |