PEFT-method-comparison / MetaMathQA /results /delora--llama-3.2-3B-rank32.json
github-actions[bot]
🚀 Deploy method comparison app from GH action
bf3e097
{
"run_info": {
"created_at": "2025-10-23T16:18:17+00:00",
"total_time": 2331.184612270001,
"experiment_name": "delora/llama-3.2-3B-rank32",
"peft_branch": "main",
"train_config": {
"model_id": "meta-llama/Llama-3.2-3B",
"dtype": "bfloat16",
"max_seq_length": 768,
"batch_size": 4,
"batch_size_eval": 50,
"max_steps": 5000,
"eval_steps": 250,
"compile": false,
"query_template": "Question: {query} Think step by step.\nAnswer:",
"seed": 0,
"grad_norm_clip": 1.0,
"optimizer_type": "AdamW",
"optimizer_kwargs": {
"lr": 0.001
},
"lr_scheduler": "cosine",
"use_amp": false,
"autocast_adapter_dtype": true,
"generation_kwargs": {
"max_length": 800,
"max_new_tokens": 300
},
"attn_implementation": null
},
"peft_config": {
"task_type": "CAUSAL_LM",
"peft_type": "DELORA",
"auto_mapping": null,
"peft_version": "0.17.2.dev0@UNKNOWN",
"base_model_name_or_path": "meta-llama/Llama-3.2-3B",
"revision": null,
"inference_mode": false,
"r": 32,
"delora_lambda": 15,
"module_dropout": 0.0,
"target_modules": [
"q_proj",
"v_proj"
],
"exclude_modules": null,
"bias": "none",
"init_weights": true,
"layers_to_transform": null,
"layers_pattern": null,
"rank_pattern": {},
"lambda_pattern": {},
"modules_to_save": null
},
"error_msg": ""
},
"train_info": {
"accelerator_memory_reserved_avg": 11956236845,
"accelerator_memory_max": 22361931776,
"accelerator_memory_reserved_99th": 17769252782,
"train_time": 2063.197599866002,
"file_size": 37417520,
"num_trainable_params": 9175096,
"num_total_params": 3221924920,
"status": "success",
"metrics": [
{
"step": 250,
"valid accuracy": 0.32,
"train loss": 0.7512386105060578,
"train samples": 1000,
"train time": 37.84413140498509,
"eval time": 13.205585324998538,
"tokens / sec": 5594.500181132732,
"mem allocated avg": 6926794532.864,
"mem reserved avg": 12007369605.12,
"elapsed time": 112.85904153599768
},
{
"step": 500,
"valid accuracy": 0.38,
"train loss": 0.7050024774074555,
"train samples": 2000,
"train time": 37.53846677497859,
"eval time": 13.265299970000342,
"tokens / sec": 5540.849636902056,
"mem allocated avg": 6919349673.984,
"mem reserved avg": 11903770296.32,
"elapsed time": 212.84601919299894
},
{
"step": 750,
"valid accuracy": 0.32,
"train loss": 0.6706294032335282,
"train samples": 3000,
"train time": 37.80458352702772,
"eval time": 13.272025713999028,
"tokens / sec": 5671.29644072703,
"mem allocated avg": 6929633923.072,
"mem reserved avg": 12056694620.16,
"elapsed time": 313.49587832399993
},
{
"step": 1000,
"valid accuracy": 0.4,
"train loss": 0.6481547034978866,
"train samples": 4000,
"train time": 37.52610543700939,
"eval time": 13.21725967599923,
"tokens / sec": 5551.761835496328,
"mem allocated avg": 6919568891.904,
"mem reserved avg": 11917057851.392,
"elapsed time": 413.16383353999845
},
{
"step": 1250,
"valid accuracy": 0.38,
"train loss": 0.6453099972009659,
"train samples": 5000,
"train time": 37.5804522819999,
"eval time": 9.624667924999812,
"tokens / sec": 5549.108308626837,
"mem allocated avg": 6921147688.96,
"mem reserved avg": 11914943922.176,
"elapsed time": 509.47617638500014
},
{
"step": 1500,
"valid accuracy": 0.46,
"train loss": 0.6384247626066208,
"train samples": 6000,
"train time": 37.65730221097692,
"eval time": 9.775350372998219,
"tokens / sec": 5558.842182246954,
"mem allocated avg": 6921056847.872,
"mem reserved avg": 11953078534.144,
"elapsed time": 606.1567662300004
},
{
"step": 1750,
"valid accuracy": 0.48,
"train loss": 0.6297660274505615,
"train samples": 7000,
"train time": 37.82186047102368,
"eval time": 7.911249515000236,
"tokens / sec": 5535.290897717534,
"mem allocated avg": 6923910838.272,
"mem reserved avg": 11956249427.968,
"elapsed time": 701.1174360119985
},
{
"step": 2000,
"valid accuracy": 0.5,
"train loss": 0.6332990030050277,
"train samples": 8000,
"train time": 37.523248280005646,
"eval time": 8.530133835996821,
"tokens / sec": 5535.128474223041,
"mem allocated avg": 6920641826.816,
"mem reserved avg": 11907327066.112,
"elapsed time": 796.1569609649996
},
{
"step": 2250,
"valid accuracy": 0.4,
"train loss": 0.6243826431035996,
"train samples": 9000,
"train time": 38.08898475294336,
"eval time": 13.285918199999287,
"tokens / sec": 5643.311350885762,
"mem allocated avg": 6931386861.568,
"mem reserved avg": 12094938284.032,
"elapsed time": 897.2201951069983
},
{
"step": 2500,
"valid accuracy": 0.5,
"train loss": 0.6215927278995514,
"train samples": 10000,
"train time": 37.63880846399843,
"eval time": 13.24860273900049,
"tokens / sec": 5472.1976705773695,
"mem allocated avg": 6917278386.176,
"mem reserved avg": 11845175869.44,
"elapsed time": 998.0728250969987
},
{
"step": 2750,
"valid accuracy": 0.42,
"train loss": 0.6130854382514953,
"train samples": 11000,
"train time": 37.79084398697523,
"eval time": 13.198808683002426,
"tokens / sec": 5606.675523653974,
"mem allocated avg": 6926927112.192,
"mem reserved avg": 12020548108.288,
"elapsed time": 1098.4325272319984
},
{
"step": 3000,
"valid accuracy": 0.46,
"train loss": 0.604831589102745,
"train samples": 12000,
"train time": 37.568779274977715,
"eval time": 10.355002560001594,
"tokens / sec": 5555.969718159649,
"mem allocated avg": 6922721505.28,
"mem reserved avg": 11937609940.992,
"elapsed time": 1195.2514979959997
},
{
"step": 3250,
"valid accuracy": 0.4,
"train loss": 0.6124310380220414,
"train samples": 13000,
"train time": 37.70235535401662,
"eval time": 10.490295633000642,
"tokens / sec": 5593.841499282662,
"mem allocated avg": 6924630044.672,
"mem reserved avg": 11975081852.928,
"elapsed time": 1292.7081366849998
},
{
"step": 3500,
"valid accuracy": 0.54,
"train loss": 0.5956783784627915,
"train samples": 14000,
"train time": 37.79015436899135,
"eval time": 7.505472221000673,
"tokens / sec": 5550.387488549399,
"mem allocated avg": 6923355121.664,
"mem reserved avg": 11948884230.144,
"elapsed time": 1387.1216009819982
},
{
"step": 3750,
"valid accuracy": 0.48,
"train loss": 0.5921734108924865,
"train samples": 15000,
"train time": 37.99711803697937,
"eval time": 8.399906407001254,
"tokens / sec": 5703.143059142048,
"mem allocated avg": 6933243086.848,
"mem reserved avg": 12128694042.624,
"elapsed time": 1483.2807508709993
},
{
"step": 4000,
"valid accuracy": 0.52,
"train loss": 0.6020598074197769,
"train samples": 16000,
"train time": 37.42554273099813,
"eval time": 13.19645261199912,
"tokens / sec": 5460.78921203528,
"mem allocated avg": 6915014187.008,
"mem reserved avg": 11819355734.016,
"elapsed time": 1582.7408143280009
},
{
"step": 4250,
"valid accuracy": 0.5,
"train loss": 0.58726664686203,
"train samples": 17000,
"train time": 37.58307892599987,
"eval time": 9.69436509300067,
"tokens / sec": 5624.579093592081,
"mem allocated avg": 6926118213.632,
"mem reserved avg": 11987807371.264,
"elapsed time": 1679.2568312559997
},
{
"step": 4500,
"valid accuracy": 0.52,
"train loss": 0.5931945472955704,
"train samples": 18000,
"train time": 37.45943218199682,
"eval time": 7.795902468998975,
"tokens / sec": 5547.815006653474,
"mem allocated avg": 6920348925.952,
"mem reserved avg": 11897596280.832,
"elapsed time": 1773.5582212900008
},
{
"step": 4750,
"valid accuracy": 0.5,
"train loss": 0.5837668641805649,
"train samples": 19000,
"train time": 37.71794232197135,
"eval time": 10.624573600001895,
"tokens / sec": 5566.024737190049,
"mem allocated avg": 6922591481.856,
"mem reserved avg": 11951140765.696,
"elapsed time": 1871.3457676430007
},
{
"step": 5000,
"valid accuracy": 0.52,
"train loss": 0.5912798082828522,
"train samples": 20000,
"train time": 37.50696286400489,
"eval time": 9.267422332999558,
"tokens / sec": 5553.1022534454405,
"mem allocated avg": 6919856828.416,
"mem reserved avg": 11901413097.472,
"elapsed time": 1967.2812061679979
},
{
"step": 5000,
"test accuracy": 0.5056861258529188,
"train loss": 0.5912798082828522,
"train samples": 20000,
"train total tokens": 4198051
}
]
},
"meta_info": {
"model_info": {
"sha": "13afe5124825b4f3751f836b40dafda64c1ed062",
"created_at": "2024-09-18T15:23:48+00:00"
},
"dataset_info": {
"metamath": {
"sha": "aa4f34d3d2d3231299b5b03d9b3e5a20da45aa18",
"created_at": "2023-09-21T17:22:46+00:00"
},
"gsm8k": {
"sha": "e53f048856ff4f594e959d75785d2c2d37b678ee",
"created_at": "2022-04-12T10:22:10+00:00"
}
},
"package_info": {
"transformers-version": "4.57.1",
"transformers-commit-hash": null,
"peft-version": "0.17.2.dev0",
"peft-commit-hash": "a18ba67f242ab2eb74cdabab76ea2fd836b5cd83",
"datasets-version": "4.2.0",
"datasets-commit-hash": null,
"bitsandbytes-version": "0.46.0",
"bitsandbytes-commit-hash": null,
"torch-version": "2.9.0+cu128",
"torch-commit-hash": null
},
"system_info": {
"system": "Linux",
"release": "6.14.0-1014-aws",
"version": "#14~24.04.1-Ubuntu SMP Tue Sep 23 14:51:14 UTC 2025",
"machine": "x86_64",
"processor": "x86_64",
"accelerator": "NVIDIA L40S"
},
"pytorch_info": "PyTorch built with:\n - GCC 13.3\n - C++ Version: 201703\n - Intel(R) oneAPI Math Kernel Library Version 2024.2-Product Build 20240605 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v3.7.1 (Git Hash 8d263e693366ef8db40acc569cc7d8edf644556d)\n - OpenMP 201511 (a.k.a. OpenMP 4.5)\n - LAPACK is enabled (usually provided by MKL)\n - NNPACK is enabled\n - CPU capability usage: AVX2\n - CUDA Runtime 12.8\n - NVCC architecture flags: -gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90;-gencode;arch=compute_100,code=sm_100;-gencode;arch=compute_120,code=sm_120\n - CuDNN 90.7.1\n - Built with CuDNN 90.8\n - Magma 2.6.1\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, COMMIT_SHA=0fabc3ba44823f257e70ce397d989c8de5e362c1, CUDA_VERSION=12.8, CUDNN_VERSION=9.8.0, CXX_COMPILER=/opt/rh/gcc-toolset-13/root/usr/bin/c++, CXX_FLAGS= -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -DC10_NODEPRECATED -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=range-loop-construct -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -faligned-new -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-dangling-reference -Wno-error=dangling-reference -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.9.0, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF, USE_XCCL=OFF, USE_XPU=OFF, \n"
}
}