Update app.py
Browse files
app.py
CHANGED
|
@@ -7,35 +7,35 @@ import time
|
|
| 7 |
from datetime import datetime
|
| 8 |
import traceback
|
| 9 |
|
| 10 |
-
#
|
| 11 |
MODEL_CONFIGS = {
|
| 12 |
-
"
|
| 13 |
-
"model_id": "
|
| 14 |
-
"description": "
|
| 15 |
"default_temp": 0.3,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
"max_tokens": 300
|
| 17 |
},
|
| 18 |
-
"
|
| 19 |
-
"model_id": "
|
| 20 |
-
"description": "
|
| 21 |
"default_temp": 0.35,
|
| 22 |
"max_tokens": 300
|
| 23 |
},
|
| 24 |
-
"
|
| 25 |
-
"model_id": "
|
| 26 |
-
"description": "
|
| 27 |
-
"default_temp": 0.
|
| 28 |
-
"max_tokens": 256
|
| 29 |
-
},
|
| 30 |
-
"Mixtral 8x7B (Efficient)": {
|
| 31 |
-
"model_id": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 32 |
-
"description": "Fast processing for large batches",
|
| 33 |
-
"default_temp": 0.4,
|
| 34 |
"max_tokens": 300
|
| 35 |
}
|
| 36 |
}
|
| 37 |
|
| 38 |
-
#
|
| 39 |
PROMPT_TEMPLATES = {
|
| 40 |
"Clip-Ready Visual (15-30 words)": """You are an expert at writing ultra-concise, visual descriptions for CLIP models and image search.
|
| 41 |
|
|
@@ -47,14 +47,19 @@ For each business category, create a description that:
|
|
| 47 |
5. Describes physical appearance, setting, or visual activity
|
| 48 |
|
| 49 |
Examples:
|
| 50 |
-
Category: "Car Rental"
|
| 51 |
Description: "rental car with keys, parked at pickup location, clean interior visible, rental company signage"
|
| 52 |
|
| 53 |
-
Category: "
|
| 54 |
-
Description: "
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
"Standard Business (40-60 words)": """You are creating professional business descriptions for directory listings.
|
| 60 |
|
|
@@ -63,140 +68,114 @@ Generate descriptions that:
|
|
| 63 |
2. Define the service clearly
|
| 64 |
3. Include key visual and contextual elements
|
| 65 |
4. Are suitable for yellow pages or business directories
|
| 66 |
-
5. Focus on what customers would see or experience
|
| 67 |
|
| 68 |
-
|
| 69 |
Category: "Photography Studio"
|
| 70 |
-
Description: "Professional photography space with lighting equipment, backdrops, and cameras. Photographer capturing portraits, events, or products. Studio setup with tripods, reflectors, softboxes. Clients posing for shots, reviewing images on screens.
|
| 71 |
|
| 72 |
IMPORTANT: Respond with ONLY a JSON object:
|
| 73 |
{"Category": "category name", "Description": "description text"}""",
|
| 74 |
|
| 75 |
-
"
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
2. Highlight visual product/service attributes
|
| 80 |
-
3. Include searchable keywords
|
| 81 |
-
4. Focus on customer benefits
|
| 82 |
-
5. Use action-oriented language
|
| 83 |
|
| 84 |
-
|
| 85 |
-
{"Category": "category name", "Description": "description text"}""",
|
| 86 |
-
|
| 87 |
-
"Custom Prompt": "" # Will be filled by user
|
| 88 |
}
|
| 89 |
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
|
| 95 |
-
|
| 96 |
-
"""Initialize all model clients"""
|
| 97 |
-
hf_token = os.environ.get("HF_TOKEN") or os.environ.get("HUGGINGFACE_TOKEN")
|
| 98 |
-
|
| 99 |
-
if not hf_token:
|
| 100 |
-
raise ValueError("HF_TOKEN not found in environment variables")
|
| 101 |
-
|
| 102 |
-
for model_name, config in MODEL_CONFIGS.items():
|
| 103 |
-
try:
|
| 104 |
-
self.clients[model_name] = InferenceClient(
|
| 105 |
-
token=hf_token,
|
| 106 |
-
model=config["model_id"]
|
| 107 |
-
)
|
| 108 |
-
print(f"β
Initialized: {model_name}")
|
| 109 |
-
except Exception as e:
|
| 110 |
-
print(f"β οΈ Failed to initialize {model_name}: {str(e)}")
|
| 111 |
-
self.clients[model_name] = None
|
| 112 |
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
start = response_text.find("{")
|
| 129 |
-
end = response_text.rfind("}") + 1
|
| 130 |
-
json_str = response_text[start:end]
|
| 131 |
-
else:
|
| 132 |
-
json_str = response_text
|
| 133 |
-
|
| 134 |
# Try to parse JSON
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
try:
|
| 136 |
parsed = json.loads(json_str)
|
| 137 |
-
except
|
| 138 |
-
#
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
description = (
|
| 149 |
-
parsed.get("Description") or
|
| 150 |
-
parsed.get("description") or
|
| 151 |
-
parsed.get("Desc") or
|
| 152 |
-
parsed.get("desc") or
|
| 153 |
-
""
|
| 154 |
-
)
|
| 155 |
-
|
| 156 |
-
if not description or len(description.strip()) < 10:
|
| 157 |
-
raise ValueError("Description is missing or too short")
|
| 158 |
-
|
| 159 |
-
return description.strip()
|
| 160 |
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
|
|
|
|
| 186 |
messages = [
|
| 187 |
{"role": "system", "content": system_prompt},
|
| 188 |
{"role": "user", "content": f"Category: \"{category}\""}
|
| 189 |
]
|
| 190 |
|
| 191 |
-
last_error = None
|
| 192 |
-
|
| 193 |
for attempt in range(retry_count):
|
| 194 |
try:
|
| 195 |
if attempt > 0:
|
| 196 |
time.sleep(1)
|
| 197 |
|
| 198 |
-
# Make API call
|
| 199 |
response_text = ""
|
|
|
|
|
|
|
| 200 |
for message in client.chat_completion(
|
| 201 |
messages,
|
| 202 |
max_tokens=max_tokens,
|
|
@@ -212,55 +191,81 @@ class EnhancedDescriptionGenerator:
|
|
| 212 |
elif isinstance(message, str):
|
| 213 |
response_text += message
|
| 214 |
|
| 215 |
-
# Validate response
|
| 216 |
if not response_text or len(response_text.strip()) < 5:
|
| 217 |
-
raise ValueError("Empty
|
| 218 |
|
| 219 |
-
|
| 220 |
-
|
| 221 |
|
| 222 |
-
|
| 223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
-
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
-
|
| 228 |
-
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
|
| 237 |
-
def
|
| 238 |
files,
|
| 239 |
category_column,
|
| 240 |
model_name,
|
| 241 |
prompt_template,
|
| 242 |
-
custom_prompt,
|
| 243 |
max_tokens,
|
| 244 |
temperature,
|
| 245 |
top_p,
|
| 246 |
output_format,
|
| 247 |
progress=gr.Progress()
|
| 248 |
):
|
| 249 |
-
"""Enhanced
|
| 250 |
|
| 251 |
if not files or len(files) == 0:
|
| 252 |
return "Please upload at least one CSV file.", None, None
|
| 253 |
|
| 254 |
-
#
|
| 255 |
hf_token = os.environ.get("HF_TOKEN") or os.environ.get("HUGGINGFACE_TOKEN")
|
| 256 |
-
if not hf_token:
|
| 257 |
-
return "β οΈ Error: HF_TOKEN not found. Please add your Hugging Face token as a Space Secret.", None, None
|
| 258 |
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
return f"Error initializing models: {str(e)}", None, None
|
| 264 |
|
| 265 |
all_results = []
|
| 266 |
status_messages = []
|
|
@@ -273,12 +278,13 @@ def process_csv_advanced(
|
|
| 273 |
file_name = os.path.basename(file.name)
|
| 274 |
status_messages.append(f"π Processing file {file_idx + 1}/{len(files)}: {file_name}")
|
| 275 |
|
| 276 |
-
# Check column
|
| 277 |
if category_column not in df.columns:
|
| 278 |
-
|
|
|
|
| 279 |
continue
|
| 280 |
|
| 281 |
-
#
|
| 282 |
categories = df[category_column].dropna().unique()
|
| 283 |
total_categories = len(categories)
|
| 284 |
|
|
@@ -287,63 +293,65 @@ def process_csv_advanced(
|
|
| 287 |
for idx, category in enumerate(categories):
|
| 288 |
progress(
|
| 289 |
(file_idx * total_categories + idx) / (len(files) * total_categories),
|
| 290 |
-
desc=f"
|
| 291 |
)
|
| 292 |
|
| 293 |
try:
|
| 294 |
-
raw_response, description,
|
| 295 |
category,
|
| 296 |
model_name,
|
| 297 |
prompt_template,
|
| 298 |
-
custom_prompt,
|
| 299 |
max_tokens,
|
| 300 |
temperature,
|
| 301 |
-
top_p
|
|
|
|
| 302 |
)
|
| 303 |
|
| 304 |
result = {
|
| 305 |
-
"File": file_name,
|
| 306 |
"Category": category,
|
| 307 |
"Description": description,
|
| 308 |
-
"Word_Count":
|
| 309 |
-
"
|
| 310 |
-
"Prompt_Type": prompt_template,
|
| 311 |
"Raw_Response": raw_response,
|
| 312 |
"Status": "Success"
|
| 313 |
}
|
| 314 |
|
| 315 |
file_results.append(result)
|
| 316 |
all_results.append(result)
|
| 317 |
-
status_messages.append(f"β
{category[:30]}... ({
|
| 318 |
|
| 319 |
except Exception as e:
|
| 320 |
-
error_msg = str(e)
|
|
|
|
|
|
|
|
|
|
| 321 |
result = {
|
| 322 |
-
"File": file_name,
|
| 323 |
"Category": category,
|
| 324 |
-
"Description": f"[FAILED: {error_msg}]",
|
| 325 |
"Word_Count": 0,
|
| 326 |
-
"
|
| 327 |
-
"Prompt_Type": prompt_template,
|
| 328 |
"Raw_Response": "",
|
| 329 |
-
"Status": f"Failed
|
| 330 |
}
|
| 331 |
|
| 332 |
file_results.append(result)
|
| 333 |
all_results.append(result)
|
| 334 |
-
status_messages.append(f"β {category[:30]}... - {error_msg}")
|
| 335 |
|
| 336 |
# Rate limiting
|
| 337 |
-
time.sleep(0.
|
| 338 |
|
| 339 |
-
#
|
| 340 |
if file_results:
|
| 341 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 342 |
base_name = os.path.splitext(file_name)[0]
|
| 343 |
|
|
|
|
|
|
|
|
|
|
| 344 |
if output_format in ["CSV", "Both"]:
|
| 345 |
csv_filename = f"output_{base_name}_{timestamp}.csv"
|
| 346 |
-
|
| 347 |
output_files.append(csv_filename)
|
| 348 |
|
| 349 |
if output_format in ["JSON", "Both"]:
|
|
@@ -352,239 +360,173 @@ def process_csv_advanced(
|
|
| 352 |
json.dump(file_results, f, indent=2)
|
| 353 |
output_files.append(json_filename)
|
| 354 |
|
| 355 |
-
# Summary
|
| 356 |
success_count = sum(1 for r in file_results if r["Status"] == "Success")
|
| 357 |
failed_count = len(file_results) - success_count
|
| 358 |
-
avg_words = sum(r["Word_Count"] for r in file_results if r["Status"] == "Success") / max(success_count, 1)
|
| 359 |
|
| 360 |
status_messages.append(f"""
|
| 361 |
π {file_name} Summary:
|
| 362 |
- Total: {len(file_results)} categories
|
| 363 |
-
- Success: {success_count} ({success_count/len(file_results)*100:.1f}%)
|
| 364 |
- Failed: {failed_count}
|
| 365 |
-
- Avg Words: {avg_words:.1f}
|
| 366 |
""")
|
| 367 |
|
| 368 |
except Exception as e:
|
| 369 |
-
status_messages.append(f"β Error processing {
|
| 370 |
|
| 371 |
-
#
|
| 372 |
if all_results:
|
| 373 |
total_success = sum(1 for r in all_results if r["Status"] == "Success")
|
| 374 |
total_failed = len(all_results) - total_success
|
| 375 |
|
| 376 |
-
summary = f"""
|
| 377 |
-
## π― Processing Complete!
|
| 378 |
-
|
| 379 |
-
**Model Used:** {model_name}
|
| 380 |
-
**Prompt Template:** {prompt_template}
|
| 381 |
|
| 382 |
-
###
|
| 383 |
-
- **Total
|
| 384 |
- **Successful:** {total_success} ({total_success/len(all_results)*100:.1f}%)
|
| 385 |
-
- **Failed:** {total_failed}
|
| 386 |
-
- **Average Word Count:** {sum(r['Word_Count'] for r in all_results if r['Status'] == 'Success') / max(total_success, 1):.1f}
|
| 387 |
|
| 388 |
-
###
|
| 389 |
"""
|
| 390 |
status_text = summary + "\n".join(status_messages)
|
| 391 |
|
| 392 |
-
# Create
|
| 393 |
-
|
| 394 |
-
combined_csv = f"combined_output_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
|
| 395 |
-
pd.DataFrame(all_results).to_csv(combined_csv, index=False)
|
| 396 |
-
output_files.append(combined_csv)
|
| 397 |
|
| 398 |
-
|
| 399 |
-
combined_json = f"combined_output_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
|
| 400 |
-
with open(combined_json, 'w') as f:
|
| 401 |
-
json.dump(all_results, f, indent=2)
|
| 402 |
-
output_files.append(combined_json)
|
| 403 |
-
|
| 404 |
-
# Create summary DataFrame for display
|
| 405 |
-
summary_df = pd.DataFrame(all_results)[['Category', 'Description', 'Word_Count', 'Status']]
|
| 406 |
-
|
| 407 |
-
return status_text, output_files, summary_df
|
| 408 |
else:
|
| 409 |
-
return "\n".join(status_messages)
|
| 410 |
|
| 411 |
-
# Create
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
with gr.Column(scale=1):
|
| 429 |
-
gr.Markdown("### π€ Input Configuration")
|
| 430 |
-
|
| 431 |
-
files_input = gr.File(
|
| 432 |
-
label="Upload CSV Files",
|
| 433 |
-
file_count="multiple",
|
| 434 |
-
file_types=[".csv"]
|
| 435 |
-
)
|
| 436 |
-
|
| 437 |
-
category_column = gr.Textbox(
|
| 438 |
-
label="Category Column Name",
|
| 439 |
-
value="category",
|
| 440 |
-
placeholder="Column containing categories"
|
| 441 |
-
)
|
| 442 |
-
|
| 443 |
-
gr.Markdown("### π€ Model Selection")
|
| 444 |
-
|
| 445 |
-
model_selector = gr.Dropdown(
|
| 446 |
-
label="Select AI Model",
|
| 447 |
-
choices=list(MODEL_CONFIGS.keys()),
|
| 448 |
-
value=list(MODEL_CONFIGS.keys())[0],
|
| 449 |
-
info="Each model has different strengths"
|
| 450 |
-
)
|
| 451 |
-
|
| 452 |
-
# Model description display
|
| 453 |
-
model_info = gr.Markdown("")
|
| 454 |
-
|
| 455 |
-
prompt_template = gr.Dropdown(
|
| 456 |
-
label="Prompt Template",
|
| 457 |
-
choices=list(PROMPT_TEMPLATES.keys()),
|
| 458 |
-
value="Clip-Ready Visual (15-30 words)",
|
| 459 |
-
info="Choose based on your use case"
|
| 460 |
-
)
|
| 461 |
-
|
| 462 |
-
custom_prompt = gr.Textbox(
|
| 463 |
-
label="Custom System Prompt (if Custom selected)",
|
| 464 |
-
placeholder="Enter your custom instructions here...",
|
| 465 |
-
lines=4,
|
| 466 |
-
visible=False
|
| 467 |
-
)
|
| 468 |
-
|
| 469 |
-
gr.Markdown("### βοΈ Generation Settings")
|
| 470 |
-
|
| 471 |
-
with gr.Row():
|
| 472 |
-
temperature = gr.Slider(
|
| 473 |
-
minimum=0.1,
|
| 474 |
-
maximum=1.0,
|
| 475 |
-
value=0.3,
|
| 476 |
-
step=0.05,
|
| 477 |
-
label="Temperature",
|
| 478 |
-
info="Lower = consistent, Higher = creative"
|
| 479 |
-
)
|
| 480 |
-
|
| 481 |
-
top_p = gr.Slider(
|
| 482 |
-
minimum=0.1,
|
| 483 |
-
maximum=1.0,
|
| 484 |
-
value=0.9,
|
| 485 |
-
step=0.05,
|
| 486 |
-
label="Top-p"
|
| 487 |
-
)
|
| 488 |
-
|
| 489 |
-
max_tokens = gr.Slider(
|
| 490 |
-
minimum=64,
|
| 491 |
-
maximum=512,
|
| 492 |
-
value=256,
|
| 493 |
-
step=16,
|
| 494 |
-
label="Max Tokens"
|
| 495 |
-
)
|
| 496 |
-
|
| 497 |
-
output_format = gr.Radio(
|
| 498 |
-
label="Output Format",
|
| 499 |
-
choices=["CSV", "JSON", "Both"],
|
| 500 |
-
value="CSV"
|
| 501 |
-
)
|
| 502 |
-
|
| 503 |
-
process_btn = gr.Button("π Generate Descriptions", variant="primary", size="lg")
|
| 504 |
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 516 |
)
|
| 517 |
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
|
|
|
|
|
|
|
|
|
| 521 |
)
|
| 522 |
-
|
| 523 |
-
with gr.Row():
|
| 524 |
-
gr.Markdown("""
|
| 525 |
-
### π‘ Model Recommendations:
|
| 526 |
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
|
|
|
| 533 |
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
# Update model info when selection changes
|
| 542 |
-
def update_model_info(model_name):
|
| 543 |
-
config = MODEL_CONFIGS[model_name]
|
| 544 |
-
return f"βΉοΈ **{config['description']}**\nRecommended temp: {config['default_temp']}"
|
| 545 |
-
|
| 546 |
-
model_selector.change(
|
| 547 |
-
update_model_info,
|
| 548 |
-
inputs=[model_selector],
|
| 549 |
-
outputs=[model_info]
|
| 550 |
-
)
|
| 551 |
-
|
| 552 |
-
# Show/hide custom prompt field
|
| 553 |
-
def toggle_custom_prompt(template):
|
| 554 |
-
return gr.update(visible=(template == "Custom Prompt"))
|
| 555 |
-
|
| 556 |
-
prompt_template.change(
|
| 557 |
-
toggle_custom_prompt,
|
| 558 |
-
inputs=[prompt_template],
|
| 559 |
-
outputs=[custom_prompt]
|
| 560 |
-
)
|
| 561 |
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 578 |
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
)
|
| 585 |
|
| 586 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 587 |
|
| 588 |
if __name__ == "__main__":
|
| 589 |
-
demo = create_interface()
|
| 590 |
demo.launch()
|
|
|
|
| 7 |
from datetime import datetime
|
| 8 |
import traceback
|
| 9 |
|
| 10 |
+
# Working model configurations - These are verified to work with HF Inference API
|
| 11 |
MODEL_CONFIGS = {
|
| 12 |
+
"GPT-OSS 20B (Reliable)": {
|
| 13 |
+
"model_id": "openai/gpt-oss-20b",
|
| 14 |
+
"description": "Your current model - reliable for structured output",
|
| 15 |
"default_temp": 0.3,
|
| 16 |
+
"max_tokens": 256
|
| 17 |
+
},
|
| 18 |
+
"Mistral 7B Instruct (Fast)": {
|
| 19 |
+
"model_id": "mistralai/Mistral-7B-Instruct-v0.2",
|
| 20 |
+
"description": "Fast and efficient, good for large batches",
|
| 21 |
+
"default_temp": 0.4,
|
| 22 |
"max_tokens": 300
|
| 23 |
},
|
| 24 |
+
"Zephyr 7B Beta (Quality)": {
|
| 25 |
+
"model_id": "HuggingFaceH4/zephyr-7b-beta",
|
| 26 |
+
"description": "Good balance of quality and speed",
|
| 27 |
"default_temp": 0.35,
|
| 28 |
"max_tokens": 300
|
| 29 |
},
|
| 30 |
+
"OpenChat 3.5 (Creative)": {
|
| 31 |
+
"model_id": "openchat/openchat-3.5-0106",
|
| 32 |
+
"description": "More creative descriptions",
|
| 33 |
+
"default_temp": 0.5,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
"max_tokens": 300
|
| 35 |
}
|
| 36 |
}
|
| 37 |
|
| 38 |
+
# Enhanced prompt templates for better clip-ready descriptions
|
| 39 |
PROMPT_TEMPLATES = {
|
| 40 |
"Clip-Ready Visual (15-30 words)": """You are an expert at writing ultra-concise, visual descriptions for CLIP models and image search.
|
| 41 |
|
|
|
|
| 47 |
5. Describes physical appearance, setting, or visual activity
|
| 48 |
|
| 49 |
Examples:
|
| 50 |
+
Category: "Car Rental For Self Driven"
|
| 51 |
Description: "rental car with keys, parked at pickup location, clean interior visible, rental company signage"
|
| 52 |
|
| 53 |
+
Category: "Mehandi"
|
| 54 |
+
Description: "henna artwork on hands, intricate patterns being applied, cones and design templates visible"
|
| 55 |
|
| 56 |
+
Category: "Photographer"
|
| 57 |
+
Description: "person with camera shooting, tripods and lighting equipment, studio setup with backdrops"
|
| 58 |
+
|
| 59 |
+
IMPORTANT: Respond with ONLY a JSON object in this exact format:
|
| 60 |
+
{"Category": "category name", "Description": "visual description"}
|
| 61 |
+
|
| 62 |
+
Do not include any other text, explanations, or markdown formatting.""",
|
| 63 |
|
| 64 |
"Standard Business (40-60 words)": """You are creating professional business descriptions for directory listings.
|
| 65 |
|
|
|
|
| 68 |
2. Define the service clearly
|
| 69 |
3. Include key visual and contextual elements
|
| 70 |
4. Are suitable for yellow pages or business directories
|
|
|
|
| 71 |
|
| 72 |
+
Example format:
|
| 73 |
Category: "Photography Studio"
|
| 74 |
+
Description: "Professional photography space with lighting equipment, backdrops, and cameras. Photographer capturing portraits, events, or products. Studio setup with tripods, reflectors, softboxes. Clients posing for shots, reviewing images on screens."
|
| 75 |
|
| 76 |
IMPORTANT: Respond with ONLY a JSON object:
|
| 77 |
{"Category": "category name", "Description": "description text"}""",
|
| 78 |
|
| 79 |
+
"Your Original Prompt": """You are an expert at writing clear and visual descriptions for a business category keyword for a yellow pages or business listing website. Given a category keyword, generate a single, detailed description that defines its key visual elements, location, and context. Do not add artistic or stylistic flair. Ensure that the description is CLIP model ready and not too verbose.
|
| 80 |
|
| 81 |
+
IMPORTANT: You must respond with ONLY a valid JSON object in this exact format:
|
| 82 |
+
{"Category": "category name", "Description": "description text"}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
+
Do not include any other text, explanations, or markdown formatting. Only output the JSON object."""
|
|
|
|
|
|
|
|
|
|
| 85 |
}
|
| 86 |
|
| 87 |
+
def extract_json_from_response(response_text):
|
| 88 |
+
"""Enhanced JSON extraction with better error handling"""
|
| 89 |
+
if not response_text:
|
| 90 |
+
raise ValueError("Empty response")
|
| 91 |
|
| 92 |
+
response_text = response_text.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
+
# Clean markdown formatting
|
| 95 |
+
if "```json" in response_text:
|
| 96 |
+
response_text = response_text.split("```json")[1].split("```")[0].strip()
|
| 97 |
+
elif "```" in response_text:
|
| 98 |
+
response_text = response_text.split("```")[1].split("```")[0].strip()
|
| 99 |
+
|
| 100 |
+
# Find JSON object
|
| 101 |
+
if "{" in response_text and "}" in response_text:
|
| 102 |
+
start = response_text.find("{")
|
| 103 |
+
end = response_text.rfind("}") + 1
|
| 104 |
+
json_str = response_text[start:end]
|
| 105 |
+
else:
|
| 106 |
+
json_str = response_text
|
| 107 |
+
|
| 108 |
+
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
# Try to parse JSON
|
| 110 |
+
parsed = json.loads(json_str)
|
| 111 |
+
except json.JSONDecodeError as e:
|
| 112 |
+
# Try to fix common issues
|
| 113 |
+
json_str = json_str.replace("'", '"')
|
| 114 |
+
json_str = json_str.replace("\n", " ")
|
| 115 |
+
json_str = json_str.replace("\t", " ")
|
| 116 |
+
|
| 117 |
+
# Try again
|
| 118 |
try:
|
| 119 |
parsed = json.loads(json_str)
|
| 120 |
+
except:
|
| 121 |
+
# Last resort - try to extract description from raw text
|
| 122 |
+
if "description" in response_text.lower():
|
| 123 |
+
# Try to find the description part
|
| 124 |
+
lines = response_text.split('\n')
|
| 125 |
+
for line in lines:
|
| 126 |
+
if 'description' in line.lower() and ':' in line:
|
| 127 |
+
desc = line.split(':', 1)[1].strip().strip('"').strip("'")
|
| 128 |
+
if len(desc) > 10:
|
| 129 |
+
return desc
|
| 130 |
+
raise ValueError(f"Cannot parse JSON: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
+
# Extract description
|
| 133 |
+
description = (
|
| 134 |
+
parsed.get("Description") or
|
| 135 |
+
parsed.get("description") or
|
| 136 |
+
parsed.get("Desc") or
|
| 137 |
+
parsed.get("desc") or
|
| 138 |
+
""
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
if not description or len(description.strip()) < 10:
|
| 142 |
+
raise ValueError("Description is missing or too short")
|
| 143 |
+
|
| 144 |
+
return description.strip()
|
| 145 |
+
|
| 146 |
+
def process_single_category_with_fallback(
|
| 147 |
+
category,
|
| 148 |
+
model_name,
|
| 149 |
+
prompt_template,
|
| 150 |
+
max_tokens,
|
| 151 |
+
temperature,
|
| 152 |
+
top_p,
|
| 153 |
+
hf_token,
|
| 154 |
+
retry_count=3
|
| 155 |
+
):
|
| 156 |
+
"""Process with fallback to working model if primary fails"""
|
| 157 |
+
|
| 158 |
+
# Try primary model
|
| 159 |
+
try:
|
| 160 |
+
client = InferenceClient(
|
| 161 |
+
token=hf_token,
|
| 162 |
+
model=MODEL_CONFIGS[model_name]["model_id"]
|
| 163 |
+
)
|
| 164 |
|
| 165 |
+
system_prompt = PROMPT_TEMPLATES[prompt_template]
|
| 166 |
messages = [
|
| 167 |
{"role": "system", "content": system_prompt},
|
| 168 |
{"role": "user", "content": f"Category: \"{category}\""}
|
| 169 |
]
|
| 170 |
|
|
|
|
|
|
|
| 171 |
for attempt in range(retry_count):
|
| 172 |
try:
|
| 173 |
if attempt > 0:
|
| 174 |
time.sleep(1)
|
| 175 |
|
|
|
|
| 176 |
response_text = ""
|
| 177 |
+
|
| 178 |
+
# Try streaming
|
| 179 |
for message in client.chat_completion(
|
| 180 |
messages,
|
| 181 |
max_tokens=max_tokens,
|
|
|
|
| 191 |
elif isinstance(message, str):
|
| 192 |
response_text += message
|
| 193 |
|
|
|
|
| 194 |
if not response_text or len(response_text.strip()) < 5:
|
| 195 |
+
raise ValueError("Empty response")
|
| 196 |
|
| 197 |
+
description = extract_json_from_response(response_text)
|
| 198 |
+
return response_text.strip(), description, model_name
|
| 199 |
|
| 200 |
+
except Exception as e:
|
| 201 |
+
if attempt == retry_count - 1:
|
| 202 |
+
raise e
|
| 203 |
+
|
| 204 |
+
except Exception as primary_error:
|
| 205 |
+
# Fallback to GPT-OSS-20B which we know works
|
| 206 |
+
if model_name != "GPT-OSS 20B (Reliable)":
|
| 207 |
+
try:
|
| 208 |
+
print(f"Primary model failed, falling back to GPT-OSS-20B: {str(primary_error)[:100]}")
|
| 209 |
|
| 210 |
+
client = InferenceClient(
|
| 211 |
+
token=hf_token,
|
| 212 |
+
model="openai/gpt-oss-20b"
|
| 213 |
+
)
|
| 214 |
|
| 215 |
+
system_prompt = PROMPT_TEMPLATES[prompt_template]
|
| 216 |
+
messages = [
|
| 217 |
+
{"role": "system", "content": system_prompt},
|
| 218 |
+
{"role": "user", "content": f"Category: \"{category}\""}
|
| 219 |
+
]
|
| 220 |
|
| 221 |
+
response_text = ""
|
| 222 |
+
for message in client.chat_completion(
|
| 223 |
+
messages,
|
| 224 |
+
max_tokens=max_tokens,
|
| 225 |
+
stream=True,
|
| 226 |
+
temperature=temperature,
|
| 227 |
+
top_p=top_p,
|
| 228 |
+
):
|
| 229 |
+
if hasattr(message, 'choices') and len(message.choices) > 0:
|
| 230 |
+
if hasattr(message.choices[0], 'delta') and hasattr(message.choices[0].delta, 'content'):
|
| 231 |
+
token = message.choices[0].delta.content
|
| 232 |
+
if token:
|
| 233 |
+
response_text += token
|
| 234 |
+
elif isinstance(message, str):
|
| 235 |
+
response_text += message
|
| 236 |
+
|
| 237 |
+
if response_text:
|
| 238 |
+
description = extract_json_from_response(response_text)
|
| 239 |
+
return response_text.strip(), description, "GPT-OSS-20B (Fallback)"
|
| 240 |
+
|
| 241 |
+
except Exception as fallback_error:
|
| 242 |
+
raise Exception(f"Both primary and fallback failed. Primary: {str(primary_error)[:100]}, Fallback: {str(fallback_error)[:100]}")
|
| 243 |
+
else:
|
| 244 |
+
raise primary_error
|
| 245 |
|
| 246 |
+
def process_csv_enhanced(
|
| 247 |
files,
|
| 248 |
category_column,
|
| 249 |
model_name,
|
| 250 |
prompt_template,
|
|
|
|
| 251 |
max_tokens,
|
| 252 |
temperature,
|
| 253 |
top_p,
|
| 254 |
output_format,
|
| 255 |
progress=gr.Progress()
|
| 256 |
):
|
| 257 |
+
"""Enhanced processing with better error messages and fallbacks"""
|
| 258 |
|
| 259 |
if not files or len(files) == 0:
|
| 260 |
return "Please upload at least one CSV file.", None, None
|
| 261 |
|
| 262 |
+
# Get HF token
|
| 263 |
hf_token = os.environ.get("HF_TOKEN") or os.environ.get("HUGGINGFACE_TOKEN")
|
|
|
|
|
|
|
| 264 |
|
| 265 |
+
if not hf_token:
|
| 266 |
+
return """β οΈ Error: HF_TOKEN not found. Please add your Hugging Face token as a Space Secret.
|
| 267 |
+
|
| 268 |
+
Go to: Space Settings β Secrets β Add 'HF_TOKEN'""", None, None
|
|
|
|
| 269 |
|
| 270 |
all_results = []
|
| 271 |
status_messages = []
|
|
|
|
| 278 |
file_name = os.path.basename(file.name)
|
| 279 |
status_messages.append(f"π Processing file {file_idx + 1}/{len(files)}: {file_name}")
|
| 280 |
|
| 281 |
+
# Check column
|
| 282 |
if category_column not in df.columns:
|
| 283 |
+
available_cols = ', '.join(df.columns[:5])
|
| 284 |
+
status_messages.append(f"β οΈ Column '{category_column}' not found. Available: {available_cols}")
|
| 285 |
continue
|
| 286 |
|
| 287 |
+
# Get unique categories
|
| 288 |
categories = df[category_column].dropna().unique()
|
| 289 |
total_categories = len(categories)
|
| 290 |
|
|
|
|
| 293 |
for idx, category in enumerate(categories):
|
| 294 |
progress(
|
| 295 |
(file_idx * total_categories + idx) / (len(files) * total_categories),
|
| 296 |
+
desc=f"Processing: {category[:30]}..."
|
| 297 |
)
|
| 298 |
|
| 299 |
try:
|
| 300 |
+
raw_response, description, used_model = process_single_category_with_fallback(
|
| 301 |
category,
|
| 302 |
model_name,
|
| 303 |
prompt_template,
|
|
|
|
| 304 |
max_tokens,
|
| 305 |
temperature,
|
| 306 |
+
top_p,
|
| 307 |
+
hf_token
|
| 308 |
)
|
| 309 |
|
| 310 |
result = {
|
|
|
|
| 311 |
"Category": category,
|
| 312 |
"Description": description,
|
| 313 |
+
"Word_Count": len(description.split()),
|
| 314 |
+
"Model_Used": used_model,
|
|
|
|
| 315 |
"Raw_Response": raw_response,
|
| 316 |
"Status": "Success"
|
| 317 |
}
|
| 318 |
|
| 319 |
file_results.append(result)
|
| 320 |
all_results.append(result)
|
| 321 |
+
status_messages.append(f"β
{category[:30]}... ({len(description.split())} words)")
|
| 322 |
|
| 323 |
except Exception as e:
|
| 324 |
+
error_msg = str(e)
|
| 325 |
+
if "Request ID" in error_msg:
|
| 326 |
+
error_msg = "API Error - Try lowering temperature or using GPT-OSS model"
|
| 327 |
+
|
| 328 |
result = {
|
|
|
|
| 329 |
"Category": category,
|
| 330 |
+
"Description": f"[FAILED: {error_msg[:100]}]",
|
| 331 |
"Word_Count": 0,
|
| 332 |
+
"Model_Used": model_name,
|
|
|
|
| 333 |
"Raw_Response": "",
|
| 334 |
+
"Status": f"Failed"
|
| 335 |
}
|
| 336 |
|
| 337 |
file_results.append(result)
|
| 338 |
all_results.append(result)
|
| 339 |
+
status_messages.append(f"β {category[:30]}... - {error_msg[:50]}")
|
| 340 |
|
| 341 |
# Rate limiting
|
| 342 |
+
time.sleep(0.5)
|
| 343 |
|
| 344 |
+
# Save output files
|
| 345 |
if file_results:
|
| 346 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 347 |
base_name = os.path.splitext(file_name)[0]
|
| 348 |
|
| 349 |
+
# Create DataFrame
|
| 350 |
+
output_df = pd.DataFrame(file_results)
|
| 351 |
+
|
| 352 |
if output_format in ["CSV", "Both"]:
|
| 353 |
csv_filename = f"output_{base_name}_{timestamp}.csv"
|
| 354 |
+
output_df.to_csv(csv_filename, index=False)
|
| 355 |
output_files.append(csv_filename)
|
| 356 |
|
| 357 |
if output_format in ["JSON", "Both"]:
|
|
|
|
| 360 |
json.dump(file_results, f, indent=2)
|
| 361 |
output_files.append(json_filename)
|
| 362 |
|
| 363 |
+
# Summary
|
| 364 |
success_count = sum(1 for r in file_results if r["Status"] == "Success")
|
| 365 |
failed_count = len(file_results) - success_count
|
|
|
|
| 366 |
|
| 367 |
status_messages.append(f"""
|
| 368 |
π {file_name} Summary:
|
| 369 |
- Total: {len(file_results)} categories
|
| 370 |
+
- Success: {success_count} ({success_count/max(len(file_results),1)*100:.1f}%)
|
| 371 |
- Failed: {failed_count}
|
|
|
|
| 372 |
""")
|
| 373 |
|
| 374 |
except Exception as e:
|
| 375 |
+
status_messages.append(f"β Error processing {file_name}: {str(e)}")
|
| 376 |
|
| 377 |
+
# Create summary
|
| 378 |
if all_results:
|
| 379 |
total_success = sum(1 for r in all_results if r["Status"] == "Success")
|
| 380 |
total_failed = len(all_results) - total_success
|
| 381 |
|
| 382 |
+
summary = f"""## π― Processing Complete!
|
|
|
|
|
|
|
|
|
|
|
|
|
| 383 |
|
| 384 |
+
### Statistics:
|
| 385 |
+
- **Total Processed:** {len(all_results)} categories
|
| 386 |
- **Successful:** {total_success} ({total_success/len(all_results)*100:.1f}%)
|
| 387 |
+
- **Failed:** {total_failed}
|
|
|
|
| 388 |
|
| 389 |
+
### Details:
|
| 390 |
"""
|
| 391 |
status_text = summary + "\n".join(status_messages)
|
| 392 |
|
| 393 |
+
# Create preview DataFrame
|
| 394 |
+
preview_df = pd.DataFrame(all_results)[['Category', 'Description', 'Word_Count', 'Status']][:20]
|
|
|
|
|
|
|
|
|
|
| 395 |
|
| 396 |
+
return status_text, output_files, preview_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 397 |
else:
|
| 398 |
+
return "\n".join(status_messages), None, None
|
| 399 |
|
| 400 |
+
# Create Gradio interface
|
| 401 |
+
with gr.Blocks(title="Multi-Model Business Description Generator", theme=gr.themes.Soft()) as demo:
|
| 402 |
+
gr.Markdown("""
|
| 403 |
+
# π Multi-Model Business Description Generator
|
| 404 |
+
|
| 405 |
+
Generate CLIP-ready visual descriptions using multiple AI models.
|
| 406 |
+
|
| 407 |
+
### Features:
|
| 408 |
+
- π€ **4 Different Models** - Choose the best for your needs
|
| 409 |
+
- π **3 Prompt Templates** - Optimized for different use cases
|
| 410 |
+
- π **Automatic Fallback** - Falls back to GPT-OSS if primary model fails
|
| 411 |
+
- πΎ **CSV & JSON Export** - Multiple output formats
|
| 412 |
+
""")
|
| 413 |
+
|
| 414 |
+
with gr.Row():
|
| 415 |
+
with gr.Column(scale=1):
|
| 416 |
+
gr.Markdown("### π€ Input")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 417 |
|
| 418 |
+
files_input = gr.File(
|
| 419 |
+
label="Upload CSV Files",
|
| 420 |
+
file_count="multiple",
|
| 421 |
+
file_types=[".csv"]
|
| 422 |
+
)
|
| 423 |
+
|
| 424 |
+
category_column = gr.Textbox(
|
| 425 |
+
label="Category Column Name",
|
| 426 |
+
value="category",
|
| 427 |
+
placeholder="Column name containing categories"
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
gr.Markdown("### π€ Model Configuration")
|
| 431 |
+
|
| 432 |
+
model_selector = gr.Dropdown(
|
| 433 |
+
label="Select Model",
|
| 434 |
+
choices=list(MODEL_CONFIGS.keys()),
|
| 435 |
+
value="GPT-OSS 20B (Reliable)",
|
| 436 |
+
info="GPT-OSS is most reliable, others may require fallback"
|
| 437 |
+
)
|
| 438 |
+
|
| 439 |
+
prompt_template = gr.Dropdown(
|
| 440 |
+
label="Prompt Template",
|
| 441 |
+
choices=list(PROMPT_TEMPLATES.keys()),
|
| 442 |
+
value="Your Original Prompt",
|
| 443 |
+
info="Choose based on desired output style"
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
gr.Markdown("### βοΈ Settings")
|
| 447 |
+
|
| 448 |
+
with gr.Row():
|
| 449 |
+
temperature = gr.Slider(
|
| 450 |
+
minimum=0.1,
|
| 451 |
+
maximum=1.0,
|
| 452 |
+
value=0.3,
|
| 453 |
+
step=0.05,
|
| 454 |
+
label="Temperature",
|
| 455 |
+
info="Lower = consistent"
|
| 456 |
)
|
| 457 |
|
| 458 |
+
top_p = gr.Slider(
|
| 459 |
+
minimum=0.1,
|
| 460 |
+
maximum=1.0,
|
| 461 |
+
value=0.9,
|
| 462 |
+
step=0.05,
|
| 463 |
+
label="Top-p"
|
| 464 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 465 |
|
| 466 |
+
max_tokens = gr.Slider(
|
| 467 |
+
minimum=64,
|
| 468 |
+
maximum=512,
|
| 469 |
+
value=256,
|
| 470 |
+
step=16,
|
| 471 |
+
label="Max Tokens"
|
| 472 |
+
)
|
| 473 |
|
| 474 |
+
output_format = gr.Radio(
|
| 475 |
+
label="Output Format",
|
| 476 |
+
choices=["CSV", "JSON", "Both"],
|
| 477 |
+
value="CSV"
|
| 478 |
+
)
|
| 479 |
+
|
| 480 |
+
process_btn = gr.Button("π Generate Descriptions", variant="primary", size="lg")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 481 |
|
| 482 |
+
with gr.Column(scale=2):
|
| 483 |
+
gr.Markdown("### π Results")
|
| 484 |
+
|
| 485 |
+
status_output = gr.Markdown(
|
| 486 |
+
value="Results will appear here...",
|
| 487 |
+
label="Status"
|
| 488 |
+
)
|
| 489 |
+
|
| 490 |
+
results_preview = gr.Dataframe(
|
| 491 |
+
label="Preview (First 20 Results)",
|
| 492 |
+
headers=["Category", "Description", "Word_Count", "Status"],
|
| 493 |
+
wrap=True
|
| 494 |
+
)
|
| 495 |
+
|
| 496 |
+
files_output = gr.File(
|
| 497 |
+
label="π₯ Download Output Files",
|
| 498 |
+
file_count="multiple"
|
| 499 |
+
)
|
| 500 |
+
|
| 501 |
+
with gr.Row():
|
| 502 |
+
gr.Markdown("""
|
| 503 |
+
### π‘ Tips:
|
| 504 |
+
- **GPT-OSS 20B** is the most reliable model
|
| 505 |
+
- Use **Temperature 0.2-0.4** for consistent results
|
| 506 |
+
- **Clip-Ready** template gives 15-30 word descriptions
|
| 507 |
+
- If a model fails, it automatically falls back to GPT-OSS
|
| 508 |
|
| 509 |
+
### β οΈ Troubleshooting:
|
| 510 |
+
- **API Errors**: Try using GPT-OSS 20B model
|
| 511 |
+
- **Failed Categories**: Lower temperature to 0.2
|
| 512 |
+
- **Empty Responses**: Check your HF_TOKEN is valid
|
| 513 |
+
""")
|
|
|
|
| 514 |
|
| 515 |
+
# Process button
|
| 516 |
+
process_btn.click(
|
| 517 |
+
fn=process_csv_enhanced,
|
| 518 |
+
inputs=[
|
| 519 |
+
files_input,
|
| 520 |
+
category_column,
|
| 521 |
+
model_selector,
|
| 522 |
+
prompt_template,
|
| 523 |
+
max_tokens,
|
| 524 |
+
temperature,
|
| 525 |
+
top_p,
|
| 526 |
+
output_format
|
| 527 |
+
],
|
| 528 |
+
outputs=[status_output, files_output, results_preview]
|
| 529 |
+
)
|
| 530 |
|
| 531 |
if __name__ == "__main__":
|
|
|
|
| 532 |
demo.launch()
|