Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,18 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import whisper
|
| 3 |
import moviepy.editor as mp
|
| 4 |
from moviepy.video.tools.subtitles import SubtitlesClip
|
| 5 |
from datetime import timedelta
|
| 6 |
import os
|
| 7 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
import torch
|
|
|
|
|
|
|
| 9 |
import spaces
|
| 10 |
|
| 11 |
# Dictionary of supported languages and their codes for MarianMT
|
|
@@ -22,8 +29,8 @@ LANGUAGE_CODES = {
|
|
| 22 |
"Korean": "ko"
|
| 23 |
}
|
| 24 |
|
| 25 |
-
# Mapping of language pairs to MarianMT model names
|
| 26 |
def get_model_name(source_lang, target_lang):
|
|
|
|
| 27 |
return f"Helsinki-NLP/opus-mt-{source_lang}-{target_lang}"
|
| 28 |
|
| 29 |
def format_timestamp(seconds):
|
|
@@ -45,7 +52,6 @@ def translate_text(text, source_lang, target_lang):
|
|
| 45 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
| 46 |
model = MarianMTModel.from_pretrained(model_name)
|
| 47 |
|
| 48 |
-
# Tokenize and translate
|
| 49 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
| 50 |
translated = model.generate(**inputs)
|
| 51 |
translated_text = tokenizer.batch_decode(translated, skip_special_tokens=True)[0]
|
|
@@ -53,10 +59,29 @@ def translate_text(text, source_lang, target_lang):
|
|
| 53 |
return translated_text
|
| 54 |
except Exception as e:
|
| 55 |
print(f"Translation error: {e}")
|
| 56 |
-
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
def create_srt(segments, target_lang="en"):
|
| 59 |
-
"""Convert
|
| 60 |
srt_content = ""
|
| 61 |
for i, segment in enumerate(segments, start=1):
|
| 62 |
start_time = format_timestamp(segment['start'])
|
|
@@ -64,7 +89,7 @@ def create_srt(segments, target_lang="en"):
|
|
| 64 |
text = segment['text'].strip()
|
| 65 |
|
| 66 |
# Translate if target language is different
|
| 67 |
-
if 'language'
|
| 68 |
text = translate_text(text, segment['language'], target_lang)
|
| 69 |
|
| 70 |
srt_content += f"{i}\n{start_time} --> {end_time}\n{text}\n\n"
|
|
@@ -81,7 +106,7 @@ def create_subtitle_clips(segments, videosize, target_lang="en"):
|
|
| 81 |
text = segment['text'].strip()
|
| 82 |
|
| 83 |
# Translate if target language is different
|
| 84 |
-
if 'language'
|
| 85 |
text = translate_text(text, segment['language'], target_lang)
|
| 86 |
|
| 87 |
text_clip = mp.TextClip(
|
|
@@ -103,26 +128,65 @@ def create_subtitle_clips(segments, videosize, target_lang="en"):
|
|
| 103 |
@spaces.GPU
|
| 104 |
def process_video(video_path, target_lang="en"):
|
| 105 |
"""Main function to process video and add subtitles with translation"""
|
| 106 |
-
# Load
|
| 107 |
-
|
|
|
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
audio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
# Transcribe audio
|
| 118 |
-
result =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
# Add detected language to segments
|
| 121 |
-
|
| 122 |
-
|
|
|
|
| 123 |
|
| 124 |
-
# Create SRT content
|
| 125 |
-
srt_content = create_srt(
|
| 126 |
|
| 127 |
# Save SRT file
|
| 128 |
video_name = os.path.splitext(os.path.basename(video_path))[0]
|
|
@@ -130,8 +194,8 @@ def process_video(video_path, target_lang="en"):
|
|
| 130 |
with open(srt_path, "w", encoding="utf-8") as f:
|
| 131 |
f.write(srt_content)
|
| 132 |
|
| 133 |
-
# Create subtitle clips
|
| 134 |
-
subtitle_clips = create_subtitle_clips(
|
| 135 |
|
| 136 |
# Combine video with subtitles
|
| 137 |
final_video = mp.CompositeVideoClip([video] + subtitle_clips)
|
|
@@ -172,8 +236,8 @@ iface = gr.Interface(
|
|
| 172 |
gr.Video(label="Video with Subtitles"),
|
| 173 |
gr.File(label="SRT Subtitle File")
|
| 174 |
],
|
| 175 |
-
title="Video Subtitler with
|
| 176 |
-
description="Upload a video to generate subtitles, translate them to your chosen language, and embed them directly in the video."
|
| 177 |
)
|
| 178 |
|
| 179 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import moviepy.editor as mp
|
| 3 |
from moviepy.video.tools.subtitles import SubtitlesClip
|
| 4 |
from datetime import timedelta
|
| 5 |
import os
|
| 6 |
+
from transformers import (
|
| 7 |
+
AutoModelForSpeechSeq2Seq,
|
| 8 |
+
AutoProcessor,
|
| 9 |
+
MarianMTModel,
|
| 10 |
+
MarianTokenizer,
|
| 11 |
+
pipeline
|
| 12 |
+
)
|
| 13 |
import torch
|
| 14 |
+
import numpy as np
|
| 15 |
+
from pydub import AudioSegment
|
| 16 |
import spaces
|
| 17 |
|
| 18 |
# Dictionary of supported languages and their codes for MarianMT
|
|
|
|
| 29 |
"Korean": "ko"
|
| 30 |
}
|
| 31 |
|
|
|
|
| 32 |
def get_model_name(source_lang, target_lang):
|
| 33 |
+
"""Get MarianMT model name for language pair"""
|
| 34 |
return f"Helsinki-NLP/opus-mt-{source_lang}-{target_lang}"
|
| 35 |
|
| 36 |
def format_timestamp(seconds):
|
|
|
|
| 52 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
| 53 |
model = MarianMTModel.from_pretrained(model_name)
|
| 54 |
|
|
|
|
| 55 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
| 56 |
translated = model.generate(**inputs)
|
| 57 |
translated_text = tokenizer.batch_decode(translated, skip_special_tokens=True)[0]
|
|
|
|
| 59 |
return translated_text
|
| 60 |
except Exception as e:
|
| 61 |
print(f"Translation error: {e}")
|
| 62 |
+
return text
|
| 63 |
+
|
| 64 |
+
def load_audio(video_path):
|
| 65 |
+
"""Extract and load audio from video file"""
|
| 66 |
+
video = mp.VideoFileClip(video_path)
|
| 67 |
+
temp_audio_path = "temp_audio.wav"
|
| 68 |
+
video.audio.write_audiofile(temp_audio_path)
|
| 69 |
+
|
| 70 |
+
# Load audio using pydub
|
| 71 |
+
audio = AudioSegment.from_wav(temp_audio_path)
|
| 72 |
+
audio_array = np.array(audio.get_array_of_samples())
|
| 73 |
+
|
| 74 |
+
# Convert to float32 and normalize
|
| 75 |
+
audio_array = audio_array.astype(np.float32) / np.iinfo(np.int16).max
|
| 76 |
+
|
| 77 |
+
# If stereo, convert to mono
|
| 78 |
+
if len(audio_array.shape) > 1:
|
| 79 |
+
audio_array = audio_array.mean(axis=1)
|
| 80 |
+
|
| 81 |
+
return audio_array, audio.frame_rate, video, temp_audio_path
|
| 82 |
|
| 83 |
def create_srt(segments, target_lang="en"):
|
| 84 |
+
"""Convert transcribed segments to SRT format with optional translation"""
|
| 85 |
srt_content = ""
|
| 86 |
for i, segment in enumerate(segments, start=1):
|
| 87 |
start_time = format_timestamp(segment['start'])
|
|
|
|
| 89 |
text = segment['text'].strip()
|
| 90 |
|
| 91 |
# Translate if target language is different
|
| 92 |
+
if segment.get('language') and segment['language'] != target_lang:
|
| 93 |
text = translate_text(text, segment['language'], target_lang)
|
| 94 |
|
| 95 |
srt_content += f"{i}\n{start_time} --> {end_time}\n{text}\n\n"
|
|
|
|
| 106 |
text = segment['text'].strip()
|
| 107 |
|
| 108 |
# Translate if target language is different
|
| 109 |
+
if segment.get('language') and segment['language'] != target_lang:
|
| 110 |
text = translate_text(text, segment['language'], target_lang)
|
| 111 |
|
| 112 |
text_clip = mp.TextClip(
|
|
|
|
| 128 |
@spaces.GPU
|
| 129 |
def process_video(video_path, target_lang="en"):
|
| 130 |
"""Main function to process video and add subtitles with translation"""
|
| 131 |
+
# Load CrisperWhisper model and processor
|
| 132 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 133 |
+
model_id = "nyrahealth/CrisperWhisper"
|
| 134 |
|
| 135 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 136 |
+
model_id,
|
| 137 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 138 |
+
low_cpu_mem_usage=True,
|
| 139 |
+
use_safetensors=True
|
| 140 |
+
).to(device)
|
| 141 |
|
| 142 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 143 |
+
|
| 144 |
+
# Load audio and video
|
| 145 |
+
audio_array, sampling_rate, video, temp_audio_path = load_audio(video_path)
|
| 146 |
+
|
| 147 |
+
# Create pipeline
|
| 148 |
+
pipe = pipeline(
|
| 149 |
+
"automatic-speech-recognition",
|
| 150 |
+
model=model,
|
| 151 |
+
tokenizer=processor.tokenizer,
|
| 152 |
+
feature_extractor=processor.feature_extractor,
|
| 153 |
+
max_new_tokens=128,
|
| 154 |
+
chunk_length_s=30,
|
| 155 |
+
batch_size=16,
|
| 156 |
+
return_timestamps=True,
|
| 157 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 158 |
+
device=device,
|
| 159 |
+
)
|
| 160 |
|
| 161 |
# Transcribe audio
|
| 162 |
+
result = pipe(audio_array, return_timestamps="word")
|
| 163 |
+
|
| 164 |
+
# Convert word-level timestamps to segments
|
| 165 |
+
segments = []
|
| 166 |
+
current_segment = {"text": "", "start": result["chunks"][0]["timestamp"][0]}
|
| 167 |
+
|
| 168 |
+
for chunk in result["chunks"]:
|
| 169 |
+
current_segment["text"] += " " + chunk["text"]
|
| 170 |
+
current_segment["end"] = chunk["timestamp"][1]
|
| 171 |
+
|
| 172 |
+
# Start new segment if text is long enough or enough time has passed
|
| 173 |
+
if len(current_segment["text"].split()) > 10 or \
|
| 174 |
+
(current_segment["end"] - current_segment["start"]) > 5.0:
|
| 175 |
+
segments.append(current_segment)
|
| 176 |
+
if chunk != result["chunks"][-1]: # If not the last chunk
|
| 177 |
+
current_segment = {"text": "", "start": chunk["timestamp"][1]}
|
| 178 |
+
|
| 179 |
+
# Add last segment if not empty
|
| 180 |
+
if current_segment["text"]:
|
| 181 |
+
segments.append(current_segment)
|
| 182 |
|
| 183 |
# Add detected language to segments
|
| 184 |
+
detected_language = "en" # CrisperWhisper is English-focused
|
| 185 |
+
for segment in segments:
|
| 186 |
+
segment['language'] = detected_language
|
| 187 |
|
| 188 |
+
# Create SRT content
|
| 189 |
+
srt_content = create_srt(segments, target_lang)
|
| 190 |
|
| 191 |
# Save SRT file
|
| 192 |
video_name = os.path.splitext(os.path.basename(video_path))[0]
|
|
|
|
| 194 |
with open(srt_path, "w", encoding="utf-8") as f:
|
| 195 |
f.write(srt_content)
|
| 196 |
|
| 197 |
+
# Create subtitle clips
|
| 198 |
+
subtitle_clips = create_subtitle_clips(segments, video.size, target_lang)
|
| 199 |
|
| 200 |
# Combine video with subtitles
|
| 201 |
final_video = mp.CompositeVideoClip([video] + subtitle_clips)
|
|
|
|
| 236 |
gr.Video(label="Video with Subtitles"),
|
| 237 |
gr.File(label="SRT Subtitle File")
|
| 238 |
],
|
| 239 |
+
title="Video Subtitler with CrisperWhisper",
|
| 240 |
+
description="Upload a video to generate subtitles using CrisperWhisper, translate them to your chosen language, and embed them directly in the video."
|
| 241 |
)
|
| 242 |
|
| 243 |
if __name__ == "__main__":
|