Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,6 +3,7 @@ import moviepy.editor as mp
|
|
| 3 |
from moviepy.video.tools.subtitles import SubtitlesClip
|
| 4 |
from datetime import timedelta
|
| 5 |
import os
|
|
|
|
| 6 |
from transformers import (
|
| 7 |
AutoModelForSpeechSeq2Seq,
|
| 8 |
AutoProcessor,
|
|
@@ -15,6 +16,17 @@ import numpy as np
|
|
| 15 |
from pydub import AudioSegment
|
| 16 |
import spaces
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
# Dictionary of supported languages and their codes for MarianMT
|
| 19 |
LANGUAGE_CODES = {
|
| 20 |
"English": "en",
|
|
@@ -31,6 +43,7 @@ LANGUAGE_CODES = {
|
|
| 31 |
|
| 32 |
def get_model_name(source_lang, target_lang):
|
| 33 |
"""Get MarianMT model name for language pair"""
|
|
|
|
| 34 |
return f"Helsinki-NLP/opus-mt-{source_lang}-{target_lang}"
|
| 35 |
|
| 36 |
def format_timestamp(seconds):
|
|
@@ -45,51 +58,67 @@ def format_timestamp(seconds):
|
|
| 45 |
def translate_text(text, source_lang, target_lang):
|
| 46 |
"""Translate text using MarianMT"""
|
| 47 |
if source_lang == target_lang:
|
|
|
|
| 48 |
return text
|
| 49 |
|
| 50 |
try:
|
|
|
|
| 51 |
model_name = get_model_name(source_lang, target_lang)
|
|
|
|
| 52 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
| 53 |
model = MarianMTModel.from_pretrained(model_name)
|
| 54 |
|
|
|
|
| 55 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
| 56 |
translated = model.generate(**inputs)
|
| 57 |
translated_text = tokenizer.batch_decode(translated, skip_special_tokens=True)[0]
|
|
|
|
| 58 |
|
| 59 |
return translated_text
|
| 60 |
except Exception as e:
|
| 61 |
-
|
| 62 |
return text
|
| 63 |
|
| 64 |
def load_audio(video_path):
|
| 65 |
"""Extract and load audio from video file"""
|
| 66 |
-
video
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
def create_srt(segments, target_lang="en"):
|
| 84 |
"""Convert transcribed segments to SRT format with optional translation"""
|
|
|
|
| 85 |
srt_content = ""
|
| 86 |
for i, segment in enumerate(segments, start=1):
|
| 87 |
start_time = format_timestamp(segment['start'])
|
| 88 |
end_time = format_timestamp(segment['end'])
|
| 89 |
text = segment['text'].strip()
|
| 90 |
|
| 91 |
-
|
| 92 |
if segment.get('language') and segment['language'] != target_lang:
|
|
|
|
| 93 |
text = translate_text(text, segment['language'], target_lang)
|
| 94 |
|
| 95 |
srt_content += f"{i}\n{start_time} --> {end_time}\n{text}\n\n"
|
|
@@ -97,128 +126,164 @@ def create_srt(segments, target_lang="en"):
|
|
| 97 |
|
| 98 |
def create_subtitle_clips(segments, videosize, target_lang="en"):
|
| 99 |
"""Create subtitle clips for moviepy with translation support"""
|
|
|
|
| 100 |
subtitle_clips = []
|
| 101 |
|
| 102 |
-
for segment in segments:
|
|
|
|
| 103 |
start_time = segment['start']
|
| 104 |
end_time = segment['end']
|
| 105 |
duration = end_time - start_time
|
| 106 |
text = segment['text'].strip()
|
| 107 |
|
| 108 |
-
# Translate if target language is different
|
| 109 |
if segment.get('language') and segment['language'] != target_lang:
|
|
|
|
| 110 |
text = translate_text(text, segment['language'], target_lang)
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
return subtitle_clips
|
| 127 |
|
| 128 |
@spaces.GPU
|
| 129 |
def process_video(video_path, target_lang="en"):
|
| 130 |
"""Main function to process video and add subtitles with translation"""
|
| 131 |
-
|
| 132 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 133 |
-
model_id = "nyrahealth/CrisperWhisper"
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
|
|
|
| 171 |
|
| 172 |
-
#
|
| 173 |
-
|
| 174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
segments.append(current_segment)
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
segments
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
|
| 214 |
def gradio_interface(video_file, target_language):
|
| 215 |
"""Gradio interface function with language selection"""
|
| 216 |
try:
|
|
|
|
|
|
|
|
|
|
| 217 |
video_path = video_file.name
|
| 218 |
target_lang = LANGUAGE_CODES[target_language]
|
| 219 |
output_video, srt_file = process_video(video_path, target_lang)
|
|
|
|
|
|
|
| 220 |
return output_video, srt_file
|
| 221 |
except Exception as e:
|
|
|
|
| 222 |
return str(e), None
|
| 223 |
|
| 224 |
# Create Gradio interface
|
|
@@ -241,4 +306,5 @@ iface = gr.Interface(
|
|
| 241 |
)
|
| 242 |
|
| 243 |
if __name__ == "__main__":
|
|
|
|
| 244 |
iface.launch()
|
|
|
|
| 3 |
from moviepy.video.tools.subtitles import SubtitlesClip
|
| 4 |
from datetime import timedelta
|
| 5 |
import os
|
| 6 |
+
import logging
|
| 7 |
from transformers import (
|
| 8 |
AutoModelForSpeechSeq2Seq,
|
| 9 |
AutoProcessor,
|
|
|
|
| 16 |
from pydub import AudioSegment
|
| 17 |
import spaces
|
| 18 |
|
| 19 |
+
# Set up logging
|
| 20 |
+
logging.basicConfig(
|
| 21 |
+
level=logging.INFO,
|
| 22 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
| 23 |
+
handlers=[
|
| 24 |
+
logging.FileHandler('video_subtitler.log'),
|
| 25 |
+
logging.StreamHandler()
|
| 26 |
+
]
|
| 27 |
+
)
|
| 28 |
+
logger = logging.getLogger(__name__)
|
| 29 |
+
|
| 30 |
# Dictionary of supported languages and their codes for MarianMT
|
| 31 |
LANGUAGE_CODES = {
|
| 32 |
"English": "en",
|
|
|
|
| 43 |
|
| 44 |
def get_model_name(source_lang, target_lang):
|
| 45 |
"""Get MarianMT model name for language pair"""
|
| 46 |
+
logger.info(f"Getting model name for translation from {source_lang} to {target_lang}")
|
| 47 |
return f"Helsinki-NLP/opus-mt-{source_lang}-{target_lang}"
|
| 48 |
|
| 49 |
def format_timestamp(seconds):
|
|
|
|
| 58 |
def translate_text(text, source_lang, target_lang):
|
| 59 |
"""Translate text using MarianMT"""
|
| 60 |
if source_lang == target_lang:
|
| 61 |
+
logger.info("Source and target languages are the same, skipping translation")
|
| 62 |
return text
|
| 63 |
|
| 64 |
try:
|
| 65 |
+
logger.info(f"Translating text from {source_lang} to {target_lang}")
|
| 66 |
model_name = get_model_name(source_lang, target_lang)
|
| 67 |
+
logger.info(f"Loading translation model: {model_name}")
|
| 68 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
| 69 |
model = MarianMTModel.from_pretrained(model_name)
|
| 70 |
|
| 71 |
+
logger.debug(f"Input text: {text}")
|
| 72 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
| 73 |
translated = model.generate(**inputs)
|
| 74 |
translated_text = tokenizer.batch_decode(translated, skip_special_tokens=True)[0]
|
| 75 |
+
logger.debug(f"Translated text: {translated_text}")
|
| 76 |
|
| 77 |
return translated_text
|
| 78 |
except Exception as e:
|
| 79 |
+
logger.error(f"Translation error: {str(e)}", exc_info=True)
|
| 80 |
return text
|
| 81 |
|
| 82 |
def load_audio(video_path):
|
| 83 |
"""Extract and load audio from video file"""
|
| 84 |
+
logger.info(f"Loading audio from video: {video_path}")
|
| 85 |
+
try:
|
| 86 |
+
video = mp.VideoFileClip(video_path)
|
| 87 |
+
logger.info(f"Video loaded. Duration: {video.duration} seconds")
|
| 88 |
+
|
| 89 |
+
temp_audio_path = "temp_audio.wav"
|
| 90 |
+
logger.info(f"Extracting audio to temporary file: {temp_audio_path}")
|
| 91 |
+
video.audio.write_audiofile(temp_audio_path)
|
| 92 |
+
|
| 93 |
+
logger.info("Loading audio file with pydub")
|
| 94 |
+
audio = AudioSegment.from_wav(temp_audio_path)
|
| 95 |
+
audio_array = np.array(audio.get_array_of_samples())
|
| 96 |
+
|
| 97 |
+
logger.info("Converting audio to float32 and normalizing")
|
| 98 |
+
audio_array = audio_array.astype(np.float32) / np.iinfo(np.int16).max
|
| 99 |
+
|
| 100 |
+
if len(audio_array.shape) > 1:
|
| 101 |
+
logger.info("Converting stereo to mono")
|
| 102 |
+
audio_array = audio_array.mean(axis=1)
|
| 103 |
+
|
| 104 |
+
logger.info(f"Audio loaded successfully. Shape: {audio_array.shape}, Sample rate: {audio.frame_rate}")
|
| 105 |
+
return audio_array, audio.frame_rate, video, temp_audio_path
|
| 106 |
+
except Exception as e:
|
| 107 |
+
logger.error(f"Error loading audio: {str(e)}", exc_info=True)
|
| 108 |
+
raise
|
| 109 |
|
| 110 |
def create_srt(segments, target_lang="en"):
|
| 111 |
"""Convert transcribed segments to SRT format with optional translation"""
|
| 112 |
+
logger.info(f"Creating SRT content for {len(segments)} segments")
|
| 113 |
srt_content = ""
|
| 114 |
for i, segment in enumerate(segments, start=1):
|
| 115 |
start_time = format_timestamp(segment['start'])
|
| 116 |
end_time = format_timestamp(segment['end'])
|
| 117 |
text = segment['text'].strip()
|
| 118 |
|
| 119 |
+
logger.debug(f"Processing segment {i}: {start_time} --> {end_time}")
|
| 120 |
if segment.get('language') and segment['language'] != target_lang:
|
| 121 |
+
logger.info(f"Translating segment {i}")
|
| 122 |
text = translate_text(text, segment['language'], target_lang)
|
| 123 |
|
| 124 |
srt_content += f"{i}\n{start_time} --> {end_time}\n{text}\n\n"
|
|
|
|
| 126 |
|
| 127 |
def create_subtitle_clips(segments, videosize, target_lang="en"):
|
| 128 |
"""Create subtitle clips for moviepy with translation support"""
|
| 129 |
+
logger.info(f"Creating subtitle clips for {len(segments)} segments")
|
| 130 |
subtitle_clips = []
|
| 131 |
|
| 132 |
+
for i, segment in enumerate(segments):
|
| 133 |
+
logger.debug(f"Processing subtitle clip {i}")
|
| 134 |
start_time = segment['start']
|
| 135 |
end_time = segment['end']
|
| 136 |
duration = end_time - start_time
|
| 137 |
text = segment['text'].strip()
|
| 138 |
|
|
|
|
| 139 |
if segment.get('language') and segment['language'] != target_lang:
|
| 140 |
+
logger.info(f"Translating subtitle {i}")
|
| 141 |
text = translate_text(text, segment['language'], target_lang)
|
| 142 |
|
| 143 |
+
try:
|
| 144 |
+
text_clip = mp.TextClip(
|
| 145 |
+
text,
|
| 146 |
+
font='Arial',
|
| 147 |
+
fontsize=24,
|
| 148 |
+
color='white',
|
| 149 |
+
stroke_color='black',
|
| 150 |
+
stroke_width=1,
|
| 151 |
+
size=videosize,
|
| 152 |
+
method='caption'
|
| 153 |
+
).set_position(('center', 'bottom'))
|
| 154 |
+
|
| 155 |
+
text_clip = text_clip.set_start(start_time).set_duration(duration)
|
| 156 |
+
subtitle_clips.append(text_clip)
|
| 157 |
+
except Exception as e:
|
| 158 |
+
logger.error(f"Error creating subtitle clip {i}: {str(e)}", exc_info=True)
|
| 159 |
|
| 160 |
return subtitle_clips
|
| 161 |
|
| 162 |
@spaces.GPU
|
| 163 |
def process_video(video_path, target_lang="en"):
|
| 164 |
"""Main function to process video and add subtitles with translation"""
|
| 165 |
+
logger.info(f"Starting video processing: {video_path}")
|
|
|
|
|
|
|
| 166 |
|
| 167 |
+
try:
|
| 168 |
+
# Set up device
|
| 169 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 170 |
+
logger.info(f"Using device: {device}")
|
| 171 |
+
|
| 172 |
+
# Load CrisperWhisper model
|
| 173 |
+
model_id = "nyrahealth/CrisperWhisper"
|
| 174 |
+
logger.info(f"Loading CrisperWhisper model: {model_id}")
|
| 175 |
+
|
| 176 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 177 |
+
model_id,
|
| 178 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 179 |
+
low_cpu_mem_usage=True,
|
| 180 |
+
use_safetensors=True
|
| 181 |
+
).to(device)
|
| 182 |
+
|
| 183 |
+
logger.info("Loading processor")
|
| 184 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 185 |
+
|
| 186 |
+
# Load audio and video
|
| 187 |
+
logger.info("Loading audio from video")
|
| 188 |
+
audio_array, sampling_rate, video, temp_audio_path = load_audio(video_path)
|
| 189 |
+
|
| 190 |
+
# Create pipeline
|
| 191 |
+
logger.info("Creating ASR pipeline")
|
| 192 |
+
pipe = pipeline(
|
| 193 |
+
"automatic-speech-recognition",
|
| 194 |
+
model=model,
|
| 195 |
+
tokenizer=processor.tokenizer,
|
| 196 |
+
feature_extractor=processor.feature_extractor,
|
| 197 |
+
max_new_tokens=128,
|
| 198 |
+
chunk_length_s=30,
|
| 199 |
+
batch_size=16,
|
| 200 |
+
return_timestamps=True,
|
| 201 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 202 |
+
device=device,
|
| 203 |
+
)
|
| 204 |
|
| 205 |
+
# Transcribe audio
|
| 206 |
+
logger.info("Starting transcription")
|
| 207 |
+
result = pipe(audio_array, return_timestamps="word")
|
| 208 |
+
logger.info("Transcription completed")
|
| 209 |
+
logger.debug(f"Transcription result: {result}")
|
| 210 |
+
|
| 211 |
+
# Convert word-level timestamps to segments
|
| 212 |
+
logger.info("Converting word-level timestamps to segments")
|
| 213 |
+
segments = []
|
| 214 |
+
current_segment = {"text": "", "start": result["chunks"][0]["timestamp"][0]}
|
| 215 |
+
|
| 216 |
+
for chunk in result["chunks"]:
|
| 217 |
+
current_segment["text"] += " " + chunk["text"]
|
| 218 |
+
current_segment["end"] = chunk["timestamp"][1]
|
| 219 |
+
|
| 220 |
+
if len(current_segment["text"].split()) > 10 or \
|
| 221 |
+
(current_segment["end"] - current_segment["start"]) > 5.0:
|
| 222 |
+
segments.append(current_segment)
|
| 223 |
+
if chunk != result["chunks"][-1]:
|
| 224 |
+
current_segment = {"text": "", "start": chunk["timestamp"][1]}
|
| 225 |
+
|
| 226 |
+
if current_segment["text"]:
|
| 227 |
segments.append(current_segment)
|
| 228 |
+
|
| 229 |
+
logger.info(f"Created {len(segments)} segments")
|
| 230 |
+
|
| 231 |
+
# Add detected language
|
| 232 |
+
detected_language = "en"
|
| 233 |
+
for segment in segments:
|
| 234 |
+
segment['language'] = detected_language
|
| 235 |
+
|
| 236 |
+
# Create SRT content
|
| 237 |
+
logger.info("Creating SRT content")
|
| 238 |
+
srt_content = create_srt(segments, target_lang)
|
| 239 |
+
|
| 240 |
+
# Save SRT file
|
| 241 |
+
video_name = os.path.splitext(os.path.basename(video_path))[0]
|
| 242 |
+
srt_path = f"{video_name}_subtitles_{target_lang}.srt"
|
| 243 |
+
logger.info(f"Saving SRT file: {srt_path}")
|
| 244 |
+
with open(srt_path, "w", encoding="utf-8") as f:
|
| 245 |
+
f.write(srt_content)
|
| 246 |
+
|
| 247 |
+
# Create subtitle clips
|
| 248 |
+
logger.info("Creating subtitle clips")
|
| 249 |
+
subtitle_clips = create_subtitle_clips(segments, video.size, target_lang)
|
| 250 |
+
|
| 251 |
+
# Combine video with subtitles
|
| 252 |
+
logger.info("Combining video with subtitles")
|
| 253 |
+
final_video = mp.CompositeVideoClip([video] + subtitle_clips)
|
| 254 |
+
|
| 255 |
+
# Save final video
|
| 256 |
+
output_video_path = f"{video_name}_with_subtitles_{target_lang}.mp4"
|
| 257 |
+
logger.info(f"Saving final video: {output_video_path}")
|
| 258 |
+
final_video.write_videofile(output_video_path)
|
| 259 |
+
|
| 260 |
+
# Clean up
|
| 261 |
+
logger.info("Cleaning up temporary files")
|
| 262 |
+
os.remove(temp_audio_path)
|
| 263 |
+
video.close()
|
| 264 |
+
final_video.close()
|
| 265 |
+
|
| 266 |
+
logger.info("Video processing completed successfully")
|
| 267 |
+
return output_video_path, srt_path
|
| 268 |
+
|
| 269 |
+
except Exception as e:
|
| 270 |
+
logger.error(f"Error in video processing: {str(e)}", exc_info=True)
|
| 271 |
+
raise
|
| 272 |
|
| 273 |
def gradio_interface(video_file, target_language):
|
| 274 |
"""Gradio interface function with language selection"""
|
| 275 |
try:
|
| 276 |
+
logger.info(f"Processing new video request: {video_file.name}")
|
| 277 |
+
logger.info(f"Target language: {target_language}")
|
| 278 |
+
|
| 279 |
video_path = video_file.name
|
| 280 |
target_lang = LANGUAGE_CODES[target_language]
|
| 281 |
output_video, srt_file = process_video(video_path, target_lang)
|
| 282 |
+
|
| 283 |
+
logger.info("Processing completed successfully")
|
| 284 |
return output_video, srt_file
|
| 285 |
except Exception as e:
|
| 286 |
+
logger.error(f"Error in Gradio interface: {str(e)}", exc_info=True)
|
| 287 |
return str(e), None
|
| 288 |
|
| 289 |
# Create Gradio interface
|
|
|
|
| 306 |
)
|
| 307 |
|
| 308 |
if __name__ == "__main__":
|
| 309 |
+
logger.info("Starting Video Subtitler application")
|
| 310 |
iface.launch()
|