Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,86 +1,43 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import os
|
| 3 |
-
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 4 |
-
import numpy as np
|
| 5 |
-
import librosa
|
| 6 |
|
| 7 |
-
|
| 8 |
-
processor = WhisperProcessor.from_pretrained("openai/whisper-base")
|
| 9 |
-
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base")
|
| 10 |
-
|
| 11 |
-
# Set light green theme
|
| 12 |
-
theme = gr.themes.Base(
|
| 13 |
-
primary_hue="emerald",
|
| 14 |
-
secondary_hue="emerald",
|
| 15 |
-
neutral_hue="gray",
|
| 16 |
-
)
|
| 17 |
-
|
| 18 |
-
def validate_file(file_path):
|
| 19 |
-
# Check if file exists
|
| 20 |
-
if not file_path or not os.path.exists(file_path):
|
| 21 |
-
return False, "No file uploaded or file not found."
|
| 22 |
-
|
| 23 |
-
# Check file size (25 MB limit)
|
| 24 |
-
file_size_mb = os.path.getsize(file_path) / (1024 * 1024)
|
| 25 |
-
if file_size_mb > 25:
|
| 26 |
-
return False, f"File size is {file_size_mb:.2f} MB. Please upload a file smaller than 25 MB."
|
| 27 |
-
|
| 28 |
-
# Check file extension
|
| 29 |
-
file_extension = os.path.splitext(file_path)[1].lower()
|
| 30 |
-
if file_extension not in ['.mp3', '.wav']:
|
| 31 |
-
return False, "Only .mp3 and .wav formats are supported."
|
| 32 |
-
|
| 33 |
-
return True, "File is valid."
|
| 34 |
|
| 35 |
def transcribe_audio(audio_file):
|
| 36 |
-
# Check if
|
| 37 |
if audio_file is None:
|
| 38 |
-
return "Please upload an audio file."
|
| 39 |
|
| 40 |
-
#
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
| 44 |
|
| 45 |
try:
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
# Process the audio file
|
| 50 |
-
input_features = processor(speech_array, sampling_rate=16000, return_tensors="pt").input_features
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
# Decode token ids to text
|
| 56 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
| 57 |
-
|
| 58 |
-
return transcription
|
| 59 |
|
|
|
|
|
|
|
| 60 |
except Exception as e:
|
| 61 |
-
return f"
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
gr.
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
with gr.Column():
|
| 75 |
-
output = gr.Textbox(label="Transcription Result", lines=10)
|
| 76 |
-
|
| 77 |
-
submit_btn.click(fn=transcribe_audio, inputs=audio_input, outputs=output)
|
| 78 |
-
|
| 79 |
-
gr.Markdown("### Limitations")
|
| 80 |
-
gr.Markdown("- Maximum file size: 25 MB")
|
| 81 |
-
gr.Markdown("- Supported formats: .mp3 and .wav")
|
| 82 |
-
gr.Markdown("- Uses the Whisper base model which works best with clear audio")
|
| 83 |
|
| 84 |
-
# Launch the app
|
| 85 |
if __name__ == "__main__":
|
| 86 |
-
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import whisper
|
| 3 |
import os
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
model = whisper.load_model("base")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
def transcribe_audio(audio_file):
|
| 8 |
+
# Check if file is uploaded
|
| 9 |
if audio_file is None:
|
| 10 |
+
return "Error: Please upload an audio file.", None
|
| 11 |
|
| 12 |
+
# Get the file path - in newer Gradio versions, audio_file might be a string path directly
|
| 13 |
+
file_path = audio_file if isinstance(audio_file, str) else audio_file.name
|
| 14 |
+
|
| 15 |
+
# Check file size (25MB limit)
|
| 16 |
+
if os.path.getsize(file_path) > 25 * 1024 * 1024:
|
| 17 |
+
return "Error: File size exceeds 25MB limit.", None
|
| 18 |
|
| 19 |
try:
|
| 20 |
+
result = model.transcribe(file_path)
|
| 21 |
+
output_filename = os.path.splitext(os.path.basename(file_path))[0] + ".txt"
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
with open(output_filename, "w") as text_file:
|
| 24 |
+
text_file.write(result["text"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
return result["text"], output_filename
|
| 27 |
+
|
| 28 |
except Exception as e:
|
| 29 |
+
return f"Error during transcription: {str(e)}", None
|
| 30 |
|
| 31 |
+
iface = gr.Interface(
|
| 32 |
+
fn=transcribe_audio,
|
| 33 |
+
inputs=gr.File(label="Upload Audio File (Max 25MB)", file_types=["audio"]),
|
| 34 |
+
outputs=[
|
| 35 |
+
gr.Textbox(label="Transcription"),
|
| 36 |
+
gr.File(label="Download Transcript")
|
| 37 |
+
],
|
| 38 |
+
title="Free Transcript Maker",
|
| 39 |
+
description="Upload an audio file (WAV, MP3, etc.) up to 25MB to get its transcription. The transcript will be displayed and available for download. Please use responsibly."
|
| 40 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
|
|
|
| 42 |
if __name__ == "__main__":
|
| 43 |
+
iface.launch()
|