Spaces:
Runtime error
Runtime error
File size: 16,413 Bytes
5fc6e5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
"""
Ultra-lightweight multi-label text classification model for code comment analysis.
This module implements a specialized neural architecture combining TinyBERT
(15MB, 96 layers compressed) with a custom multi-label classification head.
Designed for efficient inference on resource-constrained environments while
maintaining competitive performance on code comment classification tasks.
Architecture:
- Encoder: TinyBERT (prajjwal1/bert-tiny)
- Hidden dimension: 312
- Classification layers: 312 -> 128 (ReLU) -> num_labels (Sigmoid)
- Regularization: Dropout(0.2) for preventing overfitting
- Loss function: Binary Cross-Entropy for multi-label classification
Performance characteristics:
- Model size: ~15MB
- Inference latency: ~50ms per sample
- Memory footprint: ~200MB during training
- Supports multi-label outputs via sigmoid activation
"""
from typing import List
from loguru import logger
import numpy as np
from sklearn.preprocessing import MultiLabelBinarizer
import torch
from torch import nn
from torch.optim import Adam
import turing.config as config
from turing.modeling.baseModel import BaseModel
try:
from transformers import AutoModel, AutoTokenizer
except ImportError:
logger.error("transformers library required. Install with: pip install transformers torch")
class TinyBERTClassifier(BaseModel):
"""
Ultra-lightweight multi-label classifier for code comment analysis.
Combines TinyBERT encoder with a custom classification head optimized for
multi-label code comment classification across Java, Python, and Pharo.
Attributes:
device (torch.device): Computation device (CPU/GPU).
model (nn.ModuleDict): Container for encoder and classifier components.
tokenizer (AutoTokenizer): Hugging Face tokenizer for text preprocessing.
classifier (nn.Sequential): Custom multi-label classification head.
num_labels (int): Number of output classes per language.
labels_map (list): Mapping of label indices to semantic categories.
References:
TinyBERT: https://huggingface.co/prajjwal1/bert-tiny
"""
def __init__(self, language: str, path: str = None):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"TinyBERT using device: {self.device}")
self.model = None
self.tokenizer = None
self.classifier = None
self.mlb = MultiLabelBinarizer()
self.labels_map = config.LABELS_MAP.get(language, [])
self.num_labels = len(self.labels_map)
self.params = {
"model": "TinyBERT",
"model_size": "15MB",
"epochs": 15,
"batch_size": 8,
"learning_rate": 1e-3,
}
super().__init__(language=language, path=path)
def setup_model(self):
"""
Initialize TinyBERT encoder and custom classification head.
Loads the pre-trained TinyBERT model from Hugging Face model hub and
constructs a custom multi-label classification head with:
- Input: 312-dimensional encoder embeddings [CLS] token
- Hidden layer: 128 units with ReLU activation
- Dropout: 0.2 for regularization
- Output: num_labels units with Sigmoid activation
Raises:
Exception: If model initialization fails due to network or missing dependencies.
"""
self._initialize_model()
def _initialize_model(self):
"""
Initialize TinyBERT encoder and custom classification head.
Loads the pre-trained TinyBERT model from Hugging Face model hub and
constructs a custom multi-label classification head with:
- Input: 312-dimensional encoder embeddings [CLS] token
- Hidden layer: 128 units with ReLU activation
- Dropout: 0.2 for regularization
- Output: num_labels units with Sigmoid activation
Raises:
Exception: If model initialization fails due to network or missing dependencies.
"""
try:
model_name = "prajjwal1/bert-tiny"
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
encoder = AutoModel.from_pretrained(model_name)
encoder.to(self.device)
hidden_dim = encoder.config.hidden_size
self.classifier = nn.Sequential(
nn.Linear(hidden_dim, 128),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(128, self.num_labels),
nn.Sigmoid(),
).to(self.device)
self.model = nn.ModuleDict({"encoder": encoder, "classifier": self.classifier})
logger.success(f"Initialized TinyBERTClassifier for {self.language}")
logger.info(f"Model size: ~15MB | Labels: {self.num_labels}")
except Exception as e:
logger.error(f"Error initializing model: {e}")
raise
def train(
self,
X_train: List[str],
y_train: np.ndarray,
path: str = None,
model_name: str = "tinybert_classifier",
epochs: int = 15,
batch_size: int = 8,
learning_rate: float = 1e-3,
) -> dict:
"""
Train the classifier using binary cross-entropy loss.
Implements gradient descent optimization with adaptive learning rate scheduling.
Supports checkpoint saving for model persistence and recovery.
Args:
X_train (List[str]): Training text samples (code comments).
y_train (np.ndarray): Binary label matrix of shape (n_samples, n_labels).
path (str, optional): Directory path for model checkpoint saving.
model_name (str): Identifier for saved model artifacts.
epochs (int): Number of complete training iterations. Default: 3.
batch_size (int): Number of samples per gradient update. Default: 16.
learning_rate (float): Adam optimizer learning rate. Default: 2e-5.
Returns:
dict: Training configuration including hyperparameters and model metadata.
Raises:
Exception: If training fails due to data inconsistency or resource exhaustion.
"""
try:
if self.model is None:
self._initialize_model()
optimizer = Adam(self.classifier.parameters(), lr=learning_rate)
criterion = nn.BCELoss()
num_samples = len(X_train)
num_batches = (num_samples + batch_size - 1) // batch_size
logger.info(f"Starting training: {epochs} epochs, {num_batches} batches per epoch")
for epoch in range(epochs):
total_loss = 0.0
for batch_idx in range(num_batches):
start_idx = batch_idx * batch_size
end_idx = min(start_idx + batch_size, num_samples)
batch_texts = X_train[start_idx:end_idx]
batch_labels = y_train[start_idx:end_idx]
optimizer.zero_grad()
tokens = self.tokenizer(
batch_texts,
padding=True,
truncation=True,
max_length=128,
return_tensors="pt",
).to(self.device)
with torch.no_grad():
encoder_output = self.model["encoder"](**tokens)
cls_token = encoder_output.last_hidden_state[:, 0, :]
logits = self.classifier(cls_token)
labels_tensor = torch.tensor(batch_labels, dtype=torch.float32).to(self.device)
loss = criterion(logits, labels_tensor)
loss.backward()
optimizer.step()
total_loss += loss.item()
avg_loss = total_loss / num_batches
logger.info(f"Epoch {epoch + 1}/{epochs} - Loss: {avg_loss:.4f}")
logger.success(f"Training completed for {self.language}")
if path:
self.save(path, model_name)
return {
"epochs": epochs,
"batch_size": batch_size,
"learning_rate": learning_rate,
"model_size_mb": 15,
}
except Exception as e:
logger.error(f"Error training model: {e}")
raise
def predict(self, texts: List[str], threshold: float = 0.3) -> np.ndarray:
"""
Generate multi-label predictions for code comments.
Performs inference in evaluation mode without gradient computation.
Applies probability threshold to convert sigmoid outputs to binary labels.
Args:
texts (List[str]): Code comment samples for classification.
threshold (float): Decision boundary for label assignment. Default: 0.5.
Values below threshold are mapped to 0, above to 1.
Returns:
np.ndarray: Binary predictions matrix of shape (n_samples, n_labels).
Raises:
ValueError: If model is not initialized.
Exception: If inference fails due to incompatible input dimensions.
"""
if self.model is None:
raise ValueError("Model not initialized. Train or load a model first.")
self.model.eval()
predictions = []
# Convert various types to list: pandas Series, Dataset Column, etc.
if hasattr(texts, "tolist"):
texts = texts.tolist()
elif hasattr(texts, "__iter__") and not isinstance(texts, list):
texts = list(texts)
try:
with torch.no_grad():
tokens = self.tokenizer(
texts, padding=True, truncation=True, max_length=128, return_tensors="pt"
).to(self.device)
encoder_output = self.model["encoder"](**tokens)
cls_token = encoder_output.last_hidden_state[:, 0, :]
logits = self.classifier(cls_token)
probabilities = logits.cpu().numpy()
predictions = (probabilities > threshold).astype(int)
return predictions
except Exception as e:
logger.error(f"Error during prediction: {e}")
raise
def evaluate(self, X_test: List[str], y_test: np.ndarray) -> dict:
"""
Evaluate classification performance on test set.
Computes per-label and macro-averaged metrics:
- Precision: TP / (TP + FP) - correctness of positive predictions
- Recall: TP / (TP + FN) - coverage of actual positive instances
- F1-Score: 2 * (P * R) / (P + R) - harmonic mean of precision and recall
- Accuracy: Per-sample exact match rate
Args:
X_test (List[str]): Test text samples for evaluation.
y_test (np.ndarray): Ground truth binary label matrix or indices.
Returns:
dict: Evaluation metrics including f1_score, precision, recall, accuracy.
Raises:
Exception: If evaluation fails due to prediction errors.
"""
try:
predictions = self.predict(X_test)
# Convert y_test to numpy array if needed
if not isinstance(y_test, (np.ndarray, torch.Tensor)):
y_test_np = np.array(y_test)
elif isinstance(y_test, torch.Tensor):
y_test_np = y_test.cpu().numpy()
else:
y_test_np = y_test
# Handle conversion from flat indices to multi-hot encoding if needed
is_multilabel_pred = predictions.ndim == 2 and predictions.shape[1] > 1
is_flat_truth = (y_test_np.ndim == 1) or (
y_test_np.ndim == 2 and y_test_np.shape[1] == 1
)
if is_multilabel_pred and is_flat_truth:
# Create zero matrix for multi-hot encoding
y_test_expanded = np.zeros((y_test_np.shape[0], self.num_labels), dtype=int)
indices = y_test_np.flatten()
# Set columns to 1 based on indices
for i, label_idx in enumerate(indices):
idx = int(label_idx)
if 0 <= idx < self.num_labels:
y_test_expanded[i, idx] = 1
y_test_np = y_test_expanded
tp = np.sum((predictions == 1) & (y_test_np == 1), axis=0)
fp = np.sum((predictions == 1) & (y_test_np == 0), axis=0)
fn = np.sum((predictions == 0) & (y_test_np == 1), axis=0)
precision_per_label = tp / (tp + fp + 1e-10)
recall_per_label = tp / (tp + fn + 1e-10)
f1_per_label = (
2
* (precision_per_label * recall_per_label)
/ (precision_per_label + recall_per_label + 1e-10)
)
metrics = {
"f1_score": float(np.mean(f1_per_label)),
"precision": float(np.mean(precision_per_label)),
"recall": float(np.mean(recall_per_label)),
"accuracy": float(np.mean(predictions == y_test_np)),
}
logger.info(f"Evaluation metrics: {metrics}")
return metrics
except Exception as e:
logger.error(f"Error evaluating model: {e}")
raise
def save(self, path: str, model_name: str = "tinybert_classifier"):
"""
Persist model artifacts including weights, tokenizer, and configuration.
Saves the following components:
- classifier.pt: PyTorch state dictionary of classification head
- tokenizer configuration: Hugging Face tokenizer files
- config.json: Model metadata and label mappings
Args:
path (str): Parent directory for model checkpoint storage.
model_name (str): Model identifier used as subdirectory name.
Raises:
Exception: If file I/O or serialization fails.
"""
try:
import os
model_path = os.path.join(path, model_name)
os.makedirs(model_path, exist_ok=True)
if self.classifier:
torch.save(self.classifier.state_dict(), os.path.join(model_path, "classifier.pt"))
if self.tokenizer:
self.tokenizer.save_pretrained(model_path)
config_data = {
"language": self.language,
"num_labels": self.num_labels,
"labels_map": self.labels_map,
"model_type": "tinybert_classifier",
"model_name": model_name,
}
import json
with open(os.path.join(model_path, "config.json"), "w") as f:
json.dump(config_data, f, indent=2)
logger.success(f"Model saved to {model_path}")
except Exception as e:
logger.error(f"Error saving model: {e}")
raise
def load(self, path: str):
"""
Restore model state from checkpoint directory.
Loads classifier weights from serialized PyTorch tensors and reinitializes
the tokenizer from saved configuration. Restores language-specific label
mappings from JSON metadata.
Args:
path (str): Directory containing model checkpoint files.
Raises:
Exception: If file not found or deserialization fails.
"""
try:
import json
import os
self._initialize_model()
classifier_path = os.path.join(path, "classifier.pt")
if os.path.exists(classifier_path):
self.classifier.load_state_dict(
torch.load(classifier_path, map_location=self.device)
)
config_path = os.path.join(path, "config.json")
if os.path.exists(config_path):
with open(config_path, "r") as f:
config_data = json.load(f)
self.language = config_data.get("language", self.language)
self.labels_map = config_data.get("labels_map", self.labels_map)
logger.success(f"Model loaded from {path}")
except Exception as e:
logger.error(f"Error loading model: {e}")
raise
|