File size: 9,396 Bytes
5fc6e5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import os
from pathlib import Path
import sys

import numpy as np
import pandas as pd
import pytest

import turing.config as config
from turing.dataset import DatasetManager
from turing.reporting import TestReportGenerator

# --- Path Setup ---
script_dir = os.path.dirname(os.path.abspath(__file__))
proj_root = os.path.dirname(os.path.dirname(script_dir))
sys.path.append(proj_root)

train_dir = os.path.join(proj_root, "turing", "modeling")
sys.path.insert(1, train_dir)


try:
    # Import train.py
    import turing.modeling.train as train
except ImportError as e:
    pytest.skip(
        f"Could not import 'train.py'. Check sys.path. Error: {e}", allow_module_level=True
    )

# --- Reporting Setup ---
execution_results = []
active_categories = set()


def clean_test_name(nodeid):
    """Pulisce il nome del test rimuovendo parametri lunghi."""
    parts = nodeid.split("::")
    test_name = parts[-1]
    if len(test_name) > 50:
        test_name = test_name[:47] + "..."
    return test_name


def format_error_message(long_repr):
    """Estrae solo l'errore principale."""
    if not long_repr:
        return ""
    lines = str(long_repr).split("\n")
    last_line = lines[-1]
    clean_msg = last_line.replace("|", "-").strip()
    if len(clean_msg) > 60:
        clean_msg = clean_msg[:57] + "..."
    return clean_msg


@pytest.hookimpl(tryfirst=True, hookwrapper=True)
def pytest_runtest_makereport(item, call):
    outcome = yield
    report = outcome.get_result()

    if report.when == "call":
        path_str = str(item.fspath)
        category = "GENERAL"

        if "unit" in path_str:
            category = "UNIT"
        elif "behavioral" in path_str:
            category = "BEHAVIORAL"
        elif "modeling" in path_str:
            category = "MODELING"

        active_categories.add(category)

        # Simplified status mapping
        status_map = {"passed": "PASS", "failed": "FAIL", "skipped": "SKIP"}
        status_str = status_map.get(report.outcome, report.outcome.upper())

        execution_results.append(
            {
                "Category": category,
                "Module": item.fspath.basename,
                "Test Case": clean_test_name(item.nodeid),
                "Result": status_str,
                "Time": f"{report.duration:.2f}s",
                "Message": format_error_message(report.longrepr) if report.failed else "",
            }
        )


def pytest_sessionfinish(session, exitstatus):
    """Generate enhanced test report at session end."""
    if not execution_results:
        return

    report_type = (
        f"{list(active_categories)[0].lower()}_tests"
        if len(active_categories) == 1
        else "unit_and_behavioral_tests"
    )

    try:
        manager = TestReportGenerator(context_name="turing", report_category=report_type)
        
        # Main title
        manager.add_header("Turing Test Execution Report")
        manager.add_divider("section")
        
        # Environment info
        manager.add_environment_metadata()
        manager.add_divider("thin")

        df = pd.DataFrame(execution_results)

        # Sommario
        total = len(df)
        passed = len(df[df["Result"] == "[ PASS ]"])
        failed = len(df[df["Result"] == "[ FAILED ]"])
        summary = pd.DataFrame(
            [
                {
                    "Total": total,
                    "Passed": passed,
                    "Failed": failed,
                    "Success Rate": f"{(passed / total) * 100:.1f}%",
                }
            ]
        )
        manager.add_dataframe(summary, title="Executive Summary")

        # Detailed breakdown by category
        cols = ["Module", "Test Case", "Result", "Time", "Message"]
        
        if len(active_categories) > 1:
            manager.add_header("Detailed Test Results by Category", level=2)
            manager.add_divider("thin")
            
            for cat in sorted(active_categories):
                subset = df[df["Category"] == cat][cols]
                manager.add_dataframe(subset, title=f"{cat} Tests")
        else:
            manager.add_alert_box(
                "All tests passed successfully!",
                box_type="success"
            )

        manager.save("report.md")
    except Exception as e:
        print(f"\nError generating report: {e}")


# --- Fixtures ---


@pytest.fixture(scope="function")
def manager() -> DatasetManager:
    """
    Provides a instance of DatasetManager for each test.
    """
    return DatasetManager()


@pytest.fixture(scope="function")
def fake_csv_data_dir(tmp_path: Path) -> Path:
    """
    Creates a temporary directory structure mocking 'data/interim/features/clean-aug-soft-k5000'
    and populates it with minimal, valid CSV files for testing.

    Returns:
        Path: The path to the *parent* of 'features' (e.g., the mocked INTERIM_DATA_DIR).
    """
    interim_dir = tmp_path / "interim_test"
    features_dir = interim_dir / "features" / "clean-aug-soft-k5000"
    features_dir.mkdir(parents=True, exist_ok=True)

    # Define minimal valid CSV content
    csv_content = (
        "combo,labels\n"
        '"java code text","[1, 0, 0, 0, 0, 0, 0]"\n'
        '"other java code","[0, 1, 0, 0, 0, 0, 0]"\n'
    )

    # Write mock files
    (features_dir / "java_train.csv").write_text(csv_content)
    (features_dir / "java_test.csv").write_text(csv_content)

    # Return the root of the mocked interim directory
    return interim_dir


@pytest.fixture(scope="session")
def mock_data():
    """
    Provides a minimal, consistent, session-scoped dataset for model testing.
    This simulates the (X, y) data structure used for training and evaluation.
    """
    X = [
        "this is java code for summary",
        "python is great for parameters",
        "a java example for usage",
        "running python script for development notes",
        "pharo is a language for intent",
        "another java rational example",
    ]

    # Mock labels for a 'java' model (7 categories)
    # Shape (6 samples, 7 features)
    y = np.array(
        [
            [1, 0, 0, 0, 0, 0, 0],
            [0, 1, 0, 0, 0, 0, 0],
            [1, 0, 0, 1, 0, 0, 0],
            [0, 0, 1, 0, 0, 0, 0],
            [0, 0, 0, 0, 1, 0, 0],
            [1, 0, 0, 0, 0, 0, 1],
        ]
    )
    return {"X": X, "y": y}


@pytest.fixture(scope="module")
def trained_rf_model(mock_data, tmp_path_factory):
    """
    Provides a fully-trained RandomForestTfIdf model instance.
    """
    # Import locally to ensure proj_root is set
    from modeling.models.randomForestTfIdf import RandomForestTfIdf

    # Arrange
    model = RandomForestTfIdf(language="java")

    # Monkeypatch grid search parameters for maximum speed
    model.grid_params = {
        "tfidf__max_features": [10, 20],  # Use minimal features
        "clf__estimator__n_estimators": [2, 5],  # Use minimal trees
    }
    model.params["cv_folds"] = 2  # Use minimal CV folds

    # Create a persistent temp dir for this module's run
    model_path = tmp_path_factory.mktemp("trained_rf_model")

    # Act: Train the model
    model.train(mock_data["X"], mock_data["y"], path=str(model_path), model_name="test_model")

    # Yield the trained model and its save path
    yield model, model_path


MODEL_CLASS_TO_TEST = train.MODEL_CLASS
MODEL_EXPERIMENT_NAME = train.EXP_NAME
MODEL_NAME_BASE = train.MODEL_NAME


@pytest.fixture(scope="session")
def get_predicted_labels():
    def _helper(model, comment_sentence: str, lang: str) -> set:
        if config.INPUT_COLUMN == "combo":
            combo_input = f"DummyClass.{lang} | {comment_sentence}"
            input_data = [combo_input]
        else:
            input_data = [comment_sentence]

        prediction_array = model.predict(input_data)[0]
        labels_map = config.LABELS_MAP[lang]
        predicted_labels = {labels_map[i] for i, val in enumerate(prediction_array) if val == 1}
        return predicted_labels

    return _helper


@pytest.fixture(scope="module")
def java_model():
    """Loads the Java model from the config path"""
    model_path = os.path.join(config.MODELS_DIR, MODEL_EXPERIMENT_NAME, f"{MODEL_NAME_BASE}_java")
    if not os.path.exists(model_path):
        pytest.skip(
            "Production model not found. Skipping behavioral tests for Java.",
            allow_module_level=True,
        )
    return MODEL_CLASS_TO_TEST(language="java", path=model_path)


@pytest.fixture(scope="module")
def python_model():
    """Loads the Python model from the config path"""
    model_path = os.path.join(
        config.MODELS_DIR, MODEL_EXPERIMENT_NAME, f"{MODEL_NAME_BASE}_python"
    )
    if not os.path.exists(model_path):
        pytest.skip(
            "Production model not found. Skipping behavioral tests for Python.",
            allow_module_level=True,
        )
    return MODEL_CLASS_TO_TEST(language="python", path=model_path)


@pytest.fixture(scope="module")
def pharo_model():
    """Loads the Pharo model from the config path"""
    model_path = os.path.join(config.MODELS_DIR, MODEL_EXPERIMENT_NAME, f"{MODEL_NAME_BASE}_pharo")
    if not os.path.exists(model_path):
        pytest.skip(
            "Production model not found. Skipping behavioral tests for Pharo.",
            allow_module_level=True,
        )
    return MODEL_CLASS_TO_TEST(language="pharo", path=model_path)