Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ParserError
Message:      Error tokenizing data. C error: Expected 1 fields in line 3, saw 2

Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 3422, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2187, in _head
                  return next(iter(self.iter(batch_size=n)))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2391, in iter
                  for key, example in iterator:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1882, in __iter__
                  for key, pa_table in self._iter_arrow():
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1904, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 499, in _iter_arrow
                  for key, pa_table in iterator:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 346, in _iter_arrow
                  for key, pa_table in self.generate_tables_fn(**gen_kwags):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/csv/csv.py", line 190, in _generate_tables
                  for batch_idx, df in enumerate(csv_file_reader):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1843, in __next__
                  return self.get_chunk()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1985, in get_chunk
                  return self.read(nrows=size)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1923, in read
                  ) = self._engine.read(  # type: ignore[attr-defined]
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/c_parser_wrapper.py", line 234, in read
                  chunks = self._reader.read_low_memory(nrows)
                File "parsers.pyx", line 850, in pandas._libs.parsers.TextReader.read_low_memory
                File "parsers.pyx", line 905, in pandas._libs.parsers.TextReader._read_rows
                File "parsers.pyx", line 874, in pandas._libs.parsers.TextReader._tokenize_rows
                File "parsers.pyx", line 891, in pandas._libs.parsers.TextReader._check_tokenize_status
                File "parsers.pyx", line 2061, in pandas._libs.parsers.raise_parser_error
              pandas.errors.ParserError: Error tokenizing data. C error: Expected 1 fields in line 3, saw 2

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

IonoBench Datasets

GitHub Paper HF Models

IonoBench: Evaluating Spatiotemporal Models for Ionospheric Forecasting under Solar-Balanced and Storm-Aware Conditions
Published in Remote Sensing (MDPI)


These datasets is part of the IonoBench Evaluation Framework, designed to benchmark spatiotemporal deep learning models for ionospheric TEC forecasting across varying solar and geomagnetic conditions.

Highlights

  • Stratified Train/Val/Test Splits:

    • Balanced across solar activity levels to support unbiased model training and evaluation
    • Dataset includes 88 geomagnetic storms with the test set comprising 16 geomagnetic storms, with 14 intense (−250 nT ≤ Dst ≤ −100 nT) and 2 superintense (Dst < −250 nT) events
  • Chronological Version (also available):

    • Uses natural temporal order for operational forecasting scenario validation
  • Covers SC23–SC25 for comprehensive model evaluation under diverse space weather conditions


Additional Included Resources

  • C1PG 1-day CODE Prediction Product
    Provided for baseline comparison with learned models

  • IGS VTEC Maps
    Serve as reference (ground truth) for evaluating model and C1PG predictions

  • OMNIWeb Solar Parameters File
    Contains solar wind, geomagnetic, and interplanetary conditions at 1-hour resolution


Dataset Contents

  • Dates: Datetime array for each sample
  • NormTEC: 71×73 normalized TEC maps (min-max scaled using MinTEC, MaxTEC)
  • NormOMNI: 17 normalized OMNI parameters per sample
  • OMNI_Names: List of OMNI parameter names
  • split_dates: Dictionary of stratified train/val/test period ranges
  • stormDetails: Metadata on all 88 included storm periods
  • MaxTEC, MinTEC: Global TEC scaling constants for denormalization

Data Sources


Citation

If you use these datasets, please cite:

Mert C. Turkmen, Yee Hui Lee, Eng Leong Tan (2025).
IonoBench: Evaluating Spatiotemporal Models for Ionospheric Forecasting under Solar-Balanced and Storm-Aware Conditions.
Remote Sensing, 17(15), 2557. https://doi.org/10.3390/rs17152557

And cite the original data providers:

  • Hernández-Pajares, M.; et al. The IGS VTEC maps: A reliable source of ionospheric information since 1998. J. Geod. 2009, 83, 263–275. https://doi.org/10.1007/s00190-008-0266-1.
  • King, J.H.; Papitashvili, N.E. Solar wind spatial scales and comparisons of hourly Wind and ACE plasma and magnetic field data. J. Geophys. Res. 2005, 110, 2004JA010649. https://doi.org/10.1029/2004JA010649.

Downloads last month
2,800