The dataset viewer is not available for this split.
Error code: FeaturesError
Exception: ParserError
Message: Error tokenizing data. C error: Expected 1 fields in line 3, saw 2
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response
iterable_dataset = iterable_dataset._resolve_features()
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 3422, in _resolve_features
features = _infer_features_from_batch(self.with_format(None)._head())
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2187, in _head
return next(iter(self.iter(batch_size=n)))
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2391, in iter
for key, example in iterator:
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1882, in __iter__
for key, pa_table in self._iter_arrow():
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1904, in _iter_arrow
yield from self.ex_iterable._iter_arrow()
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 499, in _iter_arrow
for key, pa_table in iterator:
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 346, in _iter_arrow
for key, pa_table in self.generate_tables_fn(**gen_kwags):
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/csv/csv.py", line 190, in _generate_tables
for batch_idx, df in enumerate(csv_file_reader):
File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1843, in __next__
return self.get_chunk()
File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1985, in get_chunk
return self.read(nrows=size)
File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1923, in read
) = self._engine.read( # type: ignore[attr-defined]
File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/c_parser_wrapper.py", line 234, in read
chunks = self._reader.read_low_memory(nrows)
File "parsers.pyx", line 850, in pandas._libs.parsers.TextReader.read_low_memory
File "parsers.pyx", line 905, in pandas._libs.parsers.TextReader._read_rows
File "parsers.pyx", line 874, in pandas._libs.parsers.TextReader._tokenize_rows
File "parsers.pyx", line 891, in pandas._libs.parsers.TextReader._check_tokenize_status
File "parsers.pyx", line 2061, in pandas._libs.parsers.raise_parser_error
pandas.errors.ParserError: Error tokenizing data. C error: Expected 1 fields in line 3, saw 2Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
IonoBench Datasets
IonoBench: Evaluating Spatiotemporal Models for Ionospheric Forecasting under Solar-Balanced and Storm-Aware Conditions
Published in Remote Sensing (MDPI)
These datasets is part of the IonoBench Evaluation Framework, designed to benchmark spatiotemporal deep learning models for ionospheric TEC forecasting across varying solar and geomagnetic conditions.
Highlights
Stratified Train/Val/Test Splits:
- Balanced across solar activity levels to support unbiased model training and evaluation
- Dataset includes 88 geomagnetic storms with the test set comprising 16 geomagnetic storms, with 14 intense (−250 nT ≤ Dst ≤ −100 nT) and 2 superintense (Dst < −250 nT) events
Chronological Version (also available):
- Uses natural temporal order for operational forecasting scenario validation
Covers SC23–SC25 for comprehensive model evaluation under diverse space weather conditions
Additional Included Resources
C1PG 1-day CODE Prediction Product
Provided for baseline comparison with learned modelsIGS VTEC Maps
Serve as reference (ground truth) for evaluating model and C1PG predictionsOMNIWeb Solar Parameters File
Contains solar wind, geomagnetic, and interplanetary conditions at 1-hour resolution
Dataset Contents
Dates: Datetime array for each sampleNormTEC: 71×73 normalized TEC maps (min-max scaled usingMinTEC,MaxTEC)NormOMNI: 17 normalized OMNI parameters per sampleOMNI_Names: List of OMNI parameter namessplit_dates: Dictionary of stratified train/val/test period rangesstormDetails: Metadata on all 88 included storm periodsMaxTEC,MinTEC: Global TEC scaling constants for denormalization
Data Sources
- The IGS GIM and C1PG data are publicly available at https://cddis.nasa.gov/archive/gnss/products (accessed on 23 July 2025).
- Solar and Geomagnetic Parameters: OMNI2 via NASA GSFC OMNIWeb (SPDF) can be accessed via https://omniweb.gsfc.nasa.gov (accessed on 23 July 2025).
Citation
If you use these datasets, please cite:
Mert C. Turkmen, Yee Hui Lee, Eng Leong Tan (2025).
IonoBench: Evaluating Spatiotemporal Models for Ionospheric Forecasting under Solar-Balanced and Storm-Aware Conditions.
Remote Sensing, 17(15), 2557. https://doi.org/10.3390/rs17152557
And cite the original data providers:
- Hernández-Pajares, M.; et al. The IGS VTEC maps: A reliable source of ionospheric information since 1998. J. Geod. 2009, 83, 263–275. https://doi.org/10.1007/s00190-008-0266-1.
- King, J.H.; Papitashvili, N.E. Solar wind spatial scales and comparisons of hourly Wind and ACE plasma and magnetic field data. J. Geophys. Res. 2005, 110, 2004JA010649. https://doi.org/10.1029/2004JA010649.
- Downloads last month
- 2,800