Datasets:
text
stringlengths 9
24
|
|---|
华夏生生.json
|
湖南科伦.json
|
朗肽生物.json
|
山西国润.json
|
江西顺劲.json
|
深圳健安.json
|
重庆科瑞制药.json
|
湖北康源.json
|
四川维奥.json
|
黑龙江省京九棠.json
|
江西美联.json
|
上药科园信海医药大连_-_副本.json
|
山东益康.json
|
新疆维吾尔药业.json
|
天津汉瑞.json
|
北京韩美.json
|
重庆华森.json
|
广州广康医药.json
|
山东信谊_-_副本.json
|
成都普什.json
|
北京北陆.json
|
长春大政.json
|
广东康正.json
|
深圳未名新鹏生物医药.json
|
江苏正大_-_副本.json
|
广东泽瑞-馥感啉口服液10123004.json
|
山东泰邦.json
|
成都第一制药.json
|
天津天药_-_副本.json
|
杭州朱养心药业.json
|
广州白云山.json
|
吉林省康友.json
|
湖南康哲.json
|
成都天台山.json
|
重庆信禾.json
|
深圳市乐活.json
|
福安药业.json
|
澳诺医药.json
|
长春雷允上.json
|
瑞阳制药.json
|
苏州长征.json
|
贵州威门.json
|
上海恒瑞.json
|
江西鸿瑞.json
|
深圳市康哲药业.json
|
苏州红冠.json
|
深圳万和.json
|
北京福元.json
|
陕西汉王.json
|
浙江大冢.json
|
哈尔滨誉衡.json
|
广东红珊瑚.json
|
西藏信阳药业.json
|
辽宁新润.json
|
广东罗浮山.json
|
湖南赛隆.json
|
浙江仙居.json
|
湖南万州.json
|
江西永丰.json
|
中国医药保健品.json
|
深圳万乐.json
|
浙江维康.json
|
江西济民.json
|
上海汇伦.json
|
海南倍特.json
|
宜昌东阳光长江药业.json
|
江西美联康.json
|
苏州红冠庄.json
|
锦州奥鸿.json
|
湖北兴隆.json
|
四川科瑞德.json
|
辽宁罗欣_-_副本.json
|
重庆科瑞.json
|
通化鸿宝.json
|
湖南九典.json
|
北京四环科宝.json
|
江西济民可信.json
|
广东鼎信.json
|
福建古田.json
|
上药科园.json
|
武汉联合.json
|
沈阳铭瑞医疗器械.json
|
吉林步长.json
|
海南斯达制药.json
|
福州闽海.json
|
贵州远程.json
|
江西中印_-_副本.json
|
浙江华海.json
|
广东岭南制药.json
|
北京麦迪海.json
|
江西邦维康.json
|
山西丕康.json
|
科园信海北京_-_副本.json
|
北京春风.json
|
深圳未名新鹏生物.json
|
成都倍特.json
|
海南黄隆.json
|
上海上药_-_副本.json
|
吉林省长源.json
|
通化金凯-西黄丸.json
|
PharmaShip: An Entity-Centric, Reading-Order-Supervised Benchmark for Chinese Pharmaceutical Shipping Documents
🔗 Paper: https://arxiv.org/abs/2512.23714
🔗 Github: https://github.com/KevinYuLei/PharmaShip
Description
PharmaShip is a real-world Chinese dataset of scanned pharmaceutical shipping documents designed to stress-test pre-trained text-layout models under noisy OCR and heterogeneous templates.
It covers three complementary tasks:
- Sequence Entity Recognition (SER)
- Relation Extraction (RE)
- Reading Order Prediction (ROP)
PharmaShip adopts an entity-centric evaluation protocol to minimize confounds across architectures and incorporates a directed acyclic reading order graph to capture layout-induced reading strategies.
Dataset Examples
PharmaShip contains scanned documents with complex tabular layouts, stamps, and handwritten text. We provide fine-grained annotations at the token, entity, and relation levels, as well as reading order supervision.
Dataset Statistics
PharmaShip consists of 161 annotated scanned documents with 11,295 segments. The dataset is officially split into 128 samples for training and 33 samples for validation.
Compared to existing datasets like FUNSD, CORD, and SROIE, PharmaShip features a higher density of entities and relations per sample, making it a more challenging benchmark for layout-intensive scenarios.
Table I: Statistics of PharmaShip, ROOR, FUNSD, CORD, and SROIE, including words, segments, entities, relation pairs, and the presence/strength of reading-order supervision.
Benchmark Results
We benchmarked five representative baselines: LiLT , LayoutLMv3 , GeoLayoutLM , and their RORE (Reading-Order-Relation Enhanced) variants.
The experiments demonstrate that injecting reading-order-oriented regularization consistently improves performance on SER and Entity Linking (EL) tasks.
Table II: Performance comparison of different models on SER, EL, and ROP tasks.
Note: Improvements (↑) denote F1 gains of RORE-enhanced variants. The RORE enhancement implementation is adapted from ROOR.
Access
You can load the dataset directly using the Hugging Face datasets library:
from datasets import load_dataset
dataset = load_dataset("YuLeiKevin/PharmaShip")
You can also download the full PharmaShip dataset from the link below:
Note: The PharmaShip dataset can only be used for non-commercial research purpose.
Citation
If you find this dataset helpful for your research, please cite our paper:
@misc{xie2025pharmashipentitycentricreadingordersupervisedbenchmark,
title={PharmaShip: An Entity-Centric, Reading-Order-Supervised Benchmark for Chinese Pharmaceutical Shipping Documents},
author={Tingwei Xie and Tianyi Zhou and Yonghong Song},
year={2025},
eprint={2512.23714},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2512.23714},
}
Contact
For any questions regarding the dataset or the paper, please contact: [email protected] or [email protected], School of Software Engineering, Xi'an Jiaotong University, Xi'an, China
- Downloads last month
- -



