Dataset Viewer
Auto-converted to Parquet Duplicate
text
stringlengths
9
24
华夏生生.json
湖南科伦.json
朗肽生物.json
山西国润.json
江西顺劲.json
深圳健安.json
重庆科瑞制药.json
湖北康源.json
四川维奥.json
黑龙江省京九棠.json
江西美联.json
上药科园信海医药大连_-_副本.json
山东益康.json
新疆维吾尔药业.json
天津汉瑞.json
北京韩美.json
重庆华森.json
广州广康医药.json
山东信谊_-_副本.json
成都普什.json
北京北陆.json
长春大政.json
广东康正.json
深圳未名新鹏生物医药.json
江苏正大_-_副本.json
广东泽瑞-馥感啉口服液10123004.json
山东泰邦.json
成都第一制药.json
天津天药_-_副本.json
杭州朱养心药业.json
广州白云山.json
吉林省康友.json
湖南康哲.json
成都天台山.json
重庆信禾.json
深圳市乐活.json
福安药业.json
澳诺医药.json
长春雷允上.json
瑞阳制药.json
苏州长征.json
贵州威门.json
上海恒瑞.json
江西鸿瑞.json
深圳市康哲药业.json
苏州红冠.json
深圳万和.json
北京福元.json
陕西汉王.json
浙江大冢.json
哈尔滨誉衡.json
广东红珊瑚.json
西藏信阳药业.json
辽宁新润.json
广东罗浮山.json
湖南赛隆.json
浙江仙居.json
湖南万州.json
江西永丰.json
中国医药保健品.json
深圳万乐.json
浙江维康.json
江西济民.json
上海汇伦.json
海南倍特.json
宜昌东阳光长江药业.json
江西美联康.json
苏州红冠庄.json
锦州奥鸿.json
湖北兴隆.json
四川科瑞德.json
辽宁罗欣_-_副本.json
重庆科瑞.json
通化鸿宝.json
湖南九典.json
北京四环科宝.json
江西济民可信.json
广东鼎信.json
福建古田.json
上药科园.json
武汉联合.json
沈阳铭瑞医疗器械.json
吉林步长.json
海南斯达制药.json
福州闽海.json
贵州远程.json
江西中印_-_副本.json
浙江华海.json
广东岭南制药.json
北京麦迪海.json
江西邦维康.json
山西丕康.json
科园信海北京_-_副本.json
北京春风.json
深圳未名新鹏生物.json
成都倍特.json
海南黄隆.json
上海上药_-_副本.json
吉林省长源.json
通化金凯-西黄丸.json
End of preview. Expand in Data Studio

PharmaShip: An Entity-Centric, Reading-Order-Supervised Benchmark for Chinese Pharmaceutical Shipping Documents

🔗 Paper: https://arxiv.org/abs/2512.23714

🔗 Github: https://github.com/KevinYuLei/PharmaShip

Description

PharmaShip is a real-world Chinese dataset of scanned pharmaceutical shipping documents designed to stress-test pre-trained text-layout models under noisy OCR and heterogeneous templates.

It covers three complementary tasks:

  • Sequence Entity Recognition (SER)
  • Relation Extraction (RE)
  • Reading Order Prediction (ROP)

PharmaShip adopts an entity-centric evaluation protocol to minimize confounds across architectures and incorporates a directed acyclic reading order graph to capture layout-induced reading strategies.

Dataset Examples

PharmaShip contains scanned documents with complex tabular layouts, stamps, and handwritten text. We provide fine-grained annotations at the token, entity, and relation levels, as well as reading order supervision.

Task / View Visualization
Token-level Annotation
(Visualization of token-level ground truth)
Token Level Annotation
Entity-level Annotation
(Semantic entities annotated at the segment level)
Entity Level Annotation
Relation Extraction (RE)
(Linkage between entities, e.g., Question-Answer pairs)
Relation Extraction
Reading Order Prediction (ROP)
(DAG-based reading order based on relation extraction)
Reading Order</code></code></code></code>

Dataset Statistics

PharmaShip consists of 161 annotated scanned documents with 11,295 segments. The dataset is officially split into 128 samples for training and 33 samples for validation.

Compared to existing datasets like FUNSD, CORD, and SROIE, PharmaShip features a higher density of entities and relations per sample, making it a more challenging benchmark for layout-intensive scenarios.

Table I: Statistics of PharmaShip, ROOR, FUNSD, CORD, and SROIE, including words, segments, entities, relation pairs, and the presence/strength of reading-order supervision.

Table 1 Statistics

Benchmark Results

We benchmarked five representative baselines: LiLT , LayoutLMv3 , GeoLayoutLM , and their RORE (Reading-Order-Relation Enhanced) variants.

The experiments demonstrate that injecting reading-order-oriented regularization consistently improves performance on SER and Entity Linking (EL) tasks.

Table II: Performance comparison of different models on SER, EL, and ROP tasks.

Table 3 Performance

Note: Improvements (↑) denote F1 gains of RORE-enhanced variants. The RORE enhancement implementation is adapted from ROOR.

Access

You can load the dataset directly using the Hugging Face datasets library:

from datasets import load_dataset

dataset = load_dataset("YuLeiKevin/PharmaShip")

You can also download the full PharmaShip dataset from the link below:

🔗 Download PharmaShip Dataset

Note: The PharmaShip dataset can only be used for non-commercial research purpose.

Citation

If you find this dataset helpful for your research, please cite our paper:

@misc{xie2025pharmashipentitycentricreadingordersupervisedbenchmark,
      title={PharmaShip: An Entity-Centric, Reading-Order-Supervised Benchmark for Chinese Pharmaceutical Shipping Documents}, 
      author={Tingwei Xie and Tianyi Zhou and Yonghong Song},
      year={2025},
      eprint={2512.23714},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2512.23714}, 
}

Contact

For any questions regarding the dataset or the paper, please contact: [email protected] or [email protected], School of Software Engineering, Xi'an Jiaotong University, Xi'an, China

Downloads last month
-