Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
parquet
Languages:
Dutch
Size:
10K - 100K
ArXiv:
License:
metadata
annotations_creators:
- expert-annotated
language:
- nld
license: cc-by-nc-sa-4.0
multilinguality: monolingual
source_datasets:
- clips/mteb-nl-bbsard
task_categories:
- text-retrieval
task_ids: []
dataset_info:
- config_name: corpus
features:
- name: id
dtype: string
- name: text
dtype: string
- name: title
dtype: string
splits:
- name: test
num_bytes: 21656574
num_examples: 22415
download_size: 8789748
dataset_size: 21656574
- config_name: qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: int64
splits:
- name: test
num_bytes: 24338
num_examples: 1059
download_size: 6847
dataset_size: 24338
- config_name: queries
features:
- name: id
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 23204
num_examples: 222
download_size: 13641
dataset_size: 23204
configs:
- config_name: corpus
data_files:
- split: test
path: corpus/test-*
- config_name: qrels
data_files:
- split: test
path: qrels/test-*
- config_name: queries
data_files:
- split: test
path: queries/test-*
tags:
- mteb
- text
Building on the Belgian Statutory Article Retrieval Dataset (BSARD) in French, we introduce the bilingual version of this dataset, bBSARD. The dataset contains parallel Belgian statutory articles in both French and Dutch, along with legal questions from BSARD and their Dutch translation.
| Task category | t2t |
| Domains | Legal, Written |
| Reference | https://aclanthology.org/2025.regnlp-1.3.pdf |
Source datasets:
How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
import mteb
task = mteb.get_task("bBSARDNLRetrieval")
evaluator = mteb.MTEB([task])
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
To learn more about how to run models on mteb task check out the GitHub repository.
Citation
If you use this dataset, please cite the dataset as well as MTEB-NL, as this dataset includes additional processing.
@article{lotfi2025bilingual,
author = {Lotfi, Ehsan and Banar, Nikolay and Yuzbashyan, Nerses and Daelemans, Walter},
journal = {COLING 2025},
pages = {10},
title = {Bilingual BSARD: Extending Statutory Article Retrieval to Dutch},
year = {2025},
}
@misc{banar2025mtebnle5nlembeddingbenchmark,
title={MTEB-NL and E5-NL: Embedding Benchmark and Models for Dutch},
author={Nikolay Banar and Ehsan Lotfi and Jens Van Nooten and Cristina Arhiliuc and Marija Kliocaite and Walter Daelemans},
year={2025},
eprint={2509.12340},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2509.12340},
}
Dataset Statistics
Dataset Statistics
The following code contains the descriptive statistics from the task. These can also be obtained using:
import mteb
task = mteb.get_task("bBSARDNLRetrieval")
desc_stats = task.metadata.descriptive_stats
{
"test": {
"num_samples": 22637,
"number_of_characters": 21218611,
"documents_text_statistics": {
"total_text_length": 21197901,
"min_text_length": 7,
"average_text_length": 945.7015837608744,
"max_text_length": 37834,
"unique_texts": 22415
},
"documents_image_statistics": null,
"queries_text_statistics": {
"total_text_length": 20710,
"min_text_length": 22,
"average_text_length": 93.28828828828829,
"max_text_length": 250,
"unique_texts": 222
},
"queries_image_statistics": null,
"relevant_docs_statistics": {
"num_relevant_docs": 1059,
"min_relevant_docs_per_query": 1,
"average_relevant_docs_per_query": 4.77027027027027,
"max_relevant_docs_per_query": 57,
"unique_relevant_docs": 491
},
"top_ranked_statistics": null
}
}