Upload 全流程.ipynb
#2
by
marisming
- opened
全流程.ipynb
ADDED
|
@@ -0,0 +1,536 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"id": "8b176d65-99f7-42a8-a6b6-4ec7ecceadf2",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"基础包下载:\n",
|
| 11 |
+
"!pip install transformers sentencepiece google protobuf deepspeed peft datasets "
|
| 12 |
+
]
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"cell_type": "code",
|
| 16 |
+
"execution_count": null,
|
| 17 |
+
"id": "4702e6bb-8ade-4929-9981-f83b95d92606",
|
| 18 |
+
"metadata": {},
|
| 19 |
+
"outputs": [],
|
| 20 |
+
"source": [
|
| 21 |
+
"设置huggingface镜像:\n",
|
| 22 |
+
"import os\n",
|
| 23 |
+
"os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'\n",
|
| 24 |
+
"print(os.environ.get('HF_ENDPOINT'))"
|
| 25 |
+
]
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"cell_type": "code",
|
| 29 |
+
"execution_count": null,
|
| 30 |
+
"id": "6f64e588-a7d3-4009-bc98-f45703781ae8",
|
| 31 |
+
"metadata": {},
|
| 32 |
+
"outputs": [],
|
| 33 |
+
"source": [
|
| 34 |
+
"autodl学术资源加速,在终端运行\n",
|
| 35 |
+
"source /etc/network_turbo"
|
| 36 |
+
]
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"cell_type": "code",
|
| 40 |
+
"execution_count": null,
|
| 41 |
+
"id": "f4de3e11-6de0-4741-afa4-69dc73abd191",
|
| 42 |
+
"metadata": {},
|
| 43 |
+
"outputs": [],
|
| 44 |
+
"source": [
|
| 45 |
+
"#lfs 支持,用于git clone一些需要lfs的包\n",
|
| 46 |
+
"!apt-get update\n",
|
| 47 |
+
"!apt-get install git-lfs\n",
|
| 48 |
+
"!git lfs install"
|
| 49 |
+
]
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
"cell_type": "code",
|
| 53 |
+
"execution_count": null,
|
| 54 |
+
"id": "a774d0a1-0582-443f-89c6-cd7f4a84966a",
|
| 55 |
+
"metadata": {},
|
| 56 |
+
"outputs": [],
|
| 57 |
+
"source": [
|
| 58 |
+
"#下载好数据后,读取dna数据,分为训练集train和测试集test,默认已经shuffle\n",
|
| 59 |
+
"from datasets import load_dataset\n",
|
| 60 |
+
"dna_dataset = load_dataset('text', data_files='data/dna_1g.txt')['train'].train_test_split(test_size=0.05)\n",
|
| 61 |
+
"dna_dataset"
|
| 62 |
+
]
|
| 63 |
+
},
|
| 64 |
+
{
|
| 65 |
+
"cell_type": "code",
|
| 66 |
+
"execution_count": null,
|
| 67 |
+
"id": "5243ba2d-1e95-4161-98d9-a403f7270c74",
|
| 68 |
+
"metadata": {},
|
| 69 |
+
"outputs": [],
|
| 70 |
+
"source": [
|
| 71 |
+
"dna_dataset[\"train\"][0]"
|
| 72 |
+
]
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"cell_type": "code",
|
| 76 |
+
"execution_count": null,
|
| 77 |
+
"id": "a5b5e607-31b1-433f-a094-2fad9e4bc472",
|
| 78 |
+
"metadata": {},
|
| 79 |
+
"outputs": [],
|
| 80 |
+
"source": [
|
| 81 |
+
"前面这些数据集,就是常规的文本,一般就是当做预训练数据使用,而分类等下游微调任务,\n",
|
| 82 |
+
"一般都是包含标签的,多写成json或者csv的格式,这里也给出一个例子:\n",
|
| 83 |
+
"ft_dataset = load_dataset('json', data_files='data/dna_protein_my.json')\n",
|
| 84 |
+
"ft_dataset[\"train\"][0]"
|
| 85 |
+
]
|
| 86 |
+
},
|
| 87 |
+
{
|
| 88 |
+
"cell_type": "code",
|
| 89 |
+
"execution_count": null,
|
| 90 |
+
"id": "d1ebc301-a222-4de9-be79-0150434f25f5",
|
| 91 |
+
"metadata": {},
|
| 92 |
+
"outputs": [],
|
| 93 |
+
"source": [
|
| 94 |
+
"当然,如果数据集过大,我们只需要其中一部分,这个也是一个常见的需求,一般可以使用 Dataset.select()函数\n",
|
| 95 |
+
"from datasets import load_dataset, DatasetDict\n",
|
| 96 |
+
"dna_dataset_sample = DatasetDict(\n",
|
| 97 |
+
" {\n",
|
| 98 |
+
" \"train\": dna_dataset[\"train\"].shuffle().select(range(50000)), \n",
|
| 99 |
+
" \"valid\": dna_dataset[\"test\"].shuffle().select(range(500)),\n",
|
| 100 |
+
" \"evla\": dna_dataset[\"test\"].shuffle().select(range(500))\n",
|
| 101 |
+
"\n",
|
| 102 |
+
" }\n",
|
| 103 |
+
")\n",
|
| 104 |
+
"dna_dataset_sample\n",
|
| 105 |
+
"可以看到,我们使用DatasetDict来直接构造datasets,先使用shuffle()来随机,然后使用select来选择前n个数据\n",
|
| 106 |
+
"select的参数为indices (list 或 range): 索引列表或范围对象,指明要选择哪些样本,\n",
|
| 107 |
+
"如dataset.select([0, 2, 4])就是选择1,3,5条记录"
|
| 108 |
+
]
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
"cell_type": "code",
|
| 112 |
+
"execution_count": null,
|
| 113 |
+
"id": "2ffbe618-7146-49c6-a8bd-f1d7e9f0ad4d",
|
| 114 |
+
"metadata": {},
|
| 115 |
+
"outputs": [],
|
| 116 |
+
"source": [
|
| 117 |
+
"分享数据集到huggingface上面\n",
|
| 118 |
+
"dna_data.push_to_hub(\"org_name/your_dataset_name\", token=\"hf_yourtoken\")"
|
| 119 |
+
]
|
| 120 |
+
},
|
| 121 |
+
{
|
| 122 |
+
"cell_type": "code",
|
| 123 |
+
"execution_count": null,
|
| 124 |
+
"id": "f8512c9e-c673-49db-a60a-f818a546852f",
|
| 125 |
+
"metadata": {},
|
| 126 |
+
"outputs": [],
|
| 127 |
+
"source": [
|
| 128 |
+
"从头训练一个基于BPE的DNA分词器\n",
|
| 129 |
+
"from tokenizers import (\n",
|
| 130 |
+
" decoders,\n",
|
| 131 |
+
" models,\n",
|
| 132 |
+
" normalizers,\n",
|
| 133 |
+
" pre_tokenizers,\n",
|
| 134 |
+
" processors,\n",
|
| 135 |
+
" trainers,\n",
|
| 136 |
+
" Tokenizer,\n",
|
| 137 |
+
")\n",
|
| 138 |
+
"from transformers import AutoTokenizer"
|
| 139 |
+
]
|
| 140 |
+
},
|
| 141 |
+
{
|
| 142 |
+
"cell_type": "code",
|
| 143 |
+
"execution_count": null,
|
| 144 |
+
"id": "5937e169-ee42-44b4-9939-3792cde80ac5",
|
| 145 |
+
"metadata": {},
|
| 146 |
+
"outputs": [],
|
| 147 |
+
"source": [
|
| 148 |
+
"主分词器套分词算法\n",
|
| 149 |
+
"tokenizer = Tokenizer(models.BPE())\n",
|
| 150 |
+
"#预处理,ByteLevel就是按UTF-8分词,use_regex=False,空格当成一般字符串\n",
|
| 151 |
+
"tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=False, use_regex=False) \n",
|
| 152 |
+
"训练器,生成词表合并规则,词表大小3w\n",
|
| 153 |
+
"trainer1 = trainers.BpeTrainer(vocab_size=30000, special_tokens=[\"<|endoftext|>\"])"
|
| 154 |
+
]
|
| 155 |
+
},
|
| 156 |
+
{
|
| 157 |
+
"cell_type": "code",
|
| 158 |
+
"execution_count": null,
|
| 159 |
+
"id": "a7249164-b5f7-4a6f-9b2d-a30ae5a3e8b4",
|
| 160 |
+
"metadata": {},
|
| 161 |
+
"outputs": [],
|
| 162 |
+
"source": [
|
| 163 |
+
"用DNA数据训练\n",
|
| 164 |
+
"tokenizer.train([\"../01-data_env/data/dna_1g.txt\"], trainer=trainer1)"
|
| 165 |
+
]
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"cell_type": "code",
|
| 169 |
+
"execution_count": null,
|
| 170 |
+
"id": "8d3ddbec-ef6f-4d46-a82c-3b6e1eeacb74",
|
| 171 |
+
"metadata": {},
|
| 172 |
+
"outputs": [],
|
| 173 |
+
"source": [
|
| 174 |
+
"encode执行分词并转换为ID\n",
|
| 175 |
+
"encoding = tokenizer.encode(\"TGGCGTGAACCCGGGATCGGG\")\n",
|
| 176 |
+
"print(encoding.tokens)"
|
| 177 |
+
]
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"cell_type": "code",
|
| 181 |
+
"execution_count": null,
|
| 182 |
+
"id": "5539bc51-0d7d-4a31-a54a-597483b9861f",
|
| 183 |
+
"metadata": {},
|
| 184 |
+
"outputs": [],
|
| 185 |
+
"source": [
|
| 186 |
+
"#save简单保存\n",
|
| 187 |
+
"tokenizer.save(\"dna_bpe_dict.json\")"
|
| 188 |
+
]
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
"cell_type": "code",
|
| 192 |
+
"execution_count": null,
|
| 193 |
+
"id": "ecfed110-8840-4703-a659-b2d4a4d11f7d",
|
| 194 |
+
"metadata": {},
|
| 195 |
+
"outputs": [],
|
| 196 |
+
"source": [
|
| 197 |
+
"#然后我们可以使用from_file() 方法从该文件里重新加载 Tokenizer :\n",
|
| 198 |
+
"new_tokenizer = Tokenizer.from_file(\"dna_bpe_dict.json\")"
|
| 199 |
+
]
|
| 200 |
+
},
|
| 201 |
+
{
|
| 202 |
+
"cell_type": "code",
|
| 203 |
+
"execution_count": null,
|
| 204 |
+
"id": "15611626-c431-4f32-8f75-b3c2a6a67138",
|
| 205 |
+
"metadata": {},
|
| 206 |
+
"outputs": [],
|
| 207 |
+
"source": [
|
| 208 |
+
"#要在 hf Transformers中使用这个标记器,我们必须将它包裹在一个 PreTrainedTokenizerFast中\n",
|
| 209 |
+
"from transformers import GPT2TokenizerFast\n",
|
| 210 |
+
"dna_tokenizer = GPT2TokenizerFast(tokenizer_object=new_tokenizer)\n",
|
| 211 |
+
"#save_pretrained完整、规范地保存到磁盘,包含以下几个关键文件:\n",
|
| 212 |
+
"#1.xx.json是一个字典,映射了Token字符串到唯一ID\n",
|
| 213 |
+
"#2.merges.txt记录了BPE训练过程中所有的合并操作\n",
|
| 214 |
+
"#3.special_tokens_map.json 和 tokenizer_config.json这些是配置文件,定义了分词器的各种设置和行为。\n",
|
| 215 |
+
"#例如:哪些token是特殊token(如填充符<pad>、未知符<unk>、句首<s>),模型名称、最大长度等。\n",
|
| 216 |
+
"#这保证了分词器在不同环境中使用时的行为一致性。\n",
|
| 217 |
+
"dna_tokenizer.save_pretrained(\"dna_bpe_dict\")\n",
|
| 218 |
+
"#dna_tokenizer.push_to_hub(\"dna_bpe_dict_1g\", organization=\"dnagpt\", use_auth_token=\"hf_*****\") "
|
| 219 |
+
]
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"cell_type": "code",
|
| 223 |
+
"execution_count": null,
|
| 224 |
+
"id": "2624e2a7-7204-4c80-8806-74cb52ad11a1",
|
| 225 |
+
"metadata": {},
|
| 226 |
+
"outputs": [],
|
| 227 |
+
"source": [
|
| 228 |
+
"#save_pretrained 的标准逆操作,自动加载并实例化一个之前保存好的分词器。\n",
|
| 229 |
+
"tokenizer_new = AutoTokenizer.from_pretrained('dna_bpe_dict')\n",
|
| 230 |
+
"tokenizer.pad_token = tokenizer.eos_token"
|
| 231 |
+
]
|
| 232 |
+
},
|
| 233 |
+
{
|
| 234 |
+
"cell_type": "code",
|
| 235 |
+
"execution_count": null,
|
| 236 |
+
"id": "c93cd0f4-4b4b-4a67-b35d-668f3b920806",
|
| 237 |
+
"metadata": {},
|
| 238 |
+
"outputs": [],
|
| 239 |
+
"source": [
|
| 240 |
+
"tokenizer_new.tokenize(\"TGGCGTGAACCCGGGATCGGG\")"
|
| 241 |
+
]
|
| 242 |
+
},
|
| 243 |
+
{
|
| 244 |
+
"cell_type": "code",
|
| 245 |
+
"execution_count": null,
|
| 246 |
+
"id": "768a983c-fdc4-4f67-90e4-6ff164e6c029",
|
| 247 |
+
"metadata": {},
|
| 248 |
+
"outputs": [],
|
| 249 |
+
"source": [
|
| 250 |
+
"从头训练基于GPT2的DNA大模型\n",
|
| 251 |
+
"max_length = 256 #最大输入长度\n",
|
| 252 |
+
"#config加载并修改GPT2参数适配分词器\n",
|
| 253 |
+
"config = AutoConfig.from_pretrained(\n",
|
| 254 |
+
" \"gpt2\",\n",
|
| 255 |
+
" vocab_size=len(tokenizer),#标准的GPT-2是在英文文本上训练的,它的词汇表大小是固定的(比如50257),我们这个是3w\n",
|
| 256 |
+
" n_ctx=max_length, #上下文长度(Context length),即模型一次能处理的最大Token数量\n",
|
| 257 |
+
" bos_token_id=tokenizer.bos_token_id,#开始\n",
|
| 258 |
+
" eos_token_id=tokenizer.eos_token_id,#停止\n",
|
| 259 |
+
")\n",
|
| 260 |
+
"model = GPT2LMHeadModel(config) #权重初始化,从头预训练"
|
| 261 |
+
]
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"cell_type": "code",
|
| 265 |
+
"execution_count": null,
|
| 266 |
+
"id": "c002b619-07ca-41fc-b6c0-abfd17676934",
|
| 267 |
+
"metadata": {},
|
| 268 |
+
"outputs": [],
|
| 269 |
+
"source": [
|
| 270 |
+
"# 1. 加载数据\n",
|
| 271 |
+
"raw_dataset = load_dataset('text', data_files=\"../01-data_env/data/dna_1g.txt\")\n",
|
| 272 |
+
"dna_dataset = load_dataset('text', data_files='data/dna_1g.txt')['train'].train_test_split(test_size=0.05)\n",
|
| 273 |
+
"\n",
|
| 274 |
+
"# 2. (encode详细定义版)truncation=True过长截断, padding='max_length'过短填充到256, 界限是max_length=max_length=256\n",
|
| 275 |
+
"def tokenize_function(examples):\n",
|
| 276 |
+
" return tokenizer(examples['text'], truncation=True, padding='max_length', max_length=max_length)\n",
|
| 277 |
+
"#tokenizer的作用:\n",
|
| 278 |
+
"#输出input_ids一个二维列表(List[List[int]]),里面是填充和截断后的Token ID序列。\n",
|
| 279 |
+
"#例如:[[105, 206, 307, ..., 0, 0, 0], [408, 509, 0, 0, ...], ...]\n",
|
| 280 |
+
"#attention_mask: 同样重要的配套输出。一个与 input_ids 形状相同的二维列表,但里面全是0和1。\n",
|
| 281 |
+
"#1 表示这个位置是真实的Token。\n",
|
| 282 |
+
"#0 表示这个位置是填充的Token ([PAD])\n",
|
| 283 |
+
"\n",
|
| 284 |
+
"# 3. 对数据集应用分词函数,移除原始文本text\n",
|
| 285 |
+
"tokenized_datasets = dna_dataset.map(tokenize_function, batched=True, remove_columns=['text'], num_proc=15) # 设置为你�� CPU 核心数或根据需要调整\n",
|
| 286 |
+
"\n",
|
| 287 |
+
"# 4. 创建一个数据收集器,用于动态填充和遮蔽,tokenizer=tokenizer_new指定用于编码和解码的分词器对象\n",
|
| 288 |
+
"#上一步取到原始的 input_ids 后,会将这些数据交给 data_collator 函数,将它们处理成真正的 (inputs, labels) 对\n",
|
| 289 |
+
"data_collator = DataCollatorForLanguageModeling(\n",
|
| 290 |
+
" tokenizer=tokenizer_new, mlm=False\n",
|
| 291 |
+
")"
|
| 292 |
+
]
|
| 293 |
+
},
|
| 294 |
+
{
|
| 295 |
+
"cell_type": "code",
|
| 296 |
+
"execution_count": null,
|
| 297 |
+
"id": "0ccd72d9-f4a2-4792-8176-96afee553d27",
|
| 298 |
+
"metadata": {},
|
| 299 |
+
"outputs": [],
|
| 300 |
+
"source": [
|
| 301 |
+
"开始训练\n",
|
| 302 |
+
"run_path = \"gpt2_run\"\n",
|
| 303 |
+
"train_epoches = 5\n",
|
| 304 |
+
"batch_size = 10\n",
|
| 305 |
+
"\n",
|
| 306 |
+
"#TrainingArguments定义训练的“规则”,如:练多久、怎么练、在哪保存\n",
|
| 307 |
+
"training_args = TrainingArguments(\n",
|
| 308 |
+
" output_dir=run_path,#指定所有输出结果的保存目录。这包括最终的模型、训练过程中的检查点(checkpoints)、日志和评估结果。\n",
|
| 309 |
+
" overwrite_output_dir=True,#已有就覆盖\n",
|
| 310 |
+
" num_train_epochs=train_epoches,#训练几次\n",
|
| 311 |
+
" per_device_train_batch_size=batch_size,#每个GPU批次大小,每个10,俩GPU一共20\n",
|
| 312 |
+
" save_steps=2000,\n",
|
| 313 |
+
" save_total_limit=2,#每训练2000步就自动保存一个检查点(checkpoint),但只保留最新的2个。\n",
|
| 314 |
+
" prediction_loss_only=True,#在评估(evaluation)时只计算损失(loss),而不计算其他指标(如准确率)\n",
|
| 315 |
+
" fp16=True, #v100没法用\n",
|
| 316 |
+
" )\n",
|
| 317 |
+
"\n",
|
| 318 |
+
"\n",
|
| 319 |
+
"trainer = Trainer(\n",
|
| 320 |
+
" model=model,#model = GPT2LMHeadModel(config)\n",
|
| 321 |
+
" args=training_args,#上面那个\n",
|
| 322 |
+
" train_dataset=tokenized_datasets[\"train\"],\n",
|
| 323 |
+
" eval_dataset=tokenized_datasets[\"test\"],\n",
|
| 324 |
+
" data_collator=data_collator,\n",
|
| 325 |
+
")"
|
| 326 |
+
]
|
| 327 |
+
},
|
| 328 |
+
{
|
| 329 |
+
"cell_type": "code",
|
| 330 |
+
"execution_count": null,
|
| 331 |
+
"id": "7ff9c5a7-ce64-4bd6-92dd-7eaaa8b714c3",
|
| 332 |
+
"metadata": {},
|
| 333 |
+
"outputs": [],
|
| 334 |
+
"source": [
|
| 335 |
+
"#训练完成后\n",
|
| 336 |
+
"import math\n",
|
| 337 |
+
"eval_results = trainer.evaluate()#使用上面创建trainer时给的测试集测试\n",
|
| 338 |
+
"print(f\"Perplexity: {math.exp(eval_results['eval_loss']):.2f}\")\n",
|
| 339 |
+
"#困惑度=eval_results['eval_loss'计算损失--math.exp变成指数函数--.2f结果保留两位小数的浮点数\n",
|
| 340 |
+
"#困惑度是模型在预测下一个词时,平均面临的选择不确定性有多大"
|
| 341 |
+
]
|
| 342 |
+
},
|
| 343 |
+
{
|
| 344 |
+
"cell_type": "code",
|
| 345 |
+
"execution_count": null,
|
| 346 |
+
"id": "5a6bced4-2c0b-4ae1-911b-3a0eae83f202",
|
| 347 |
+
"metadata": {},
|
| 348 |
+
"outputs": [],
|
| 349 |
+
"source": [
|
| 350 |
+
"#上传模型\n",
|
| 351 |
+
"model.push_to_hub(\"dna_gpt2_v0\", organization=\"dnagpt\", use_auth_token=\"hf_*******\")"
|
| 352 |
+
]
|
| 353 |
+
},
|
| 354 |
+
{
|
| 355 |
+
"cell_type": "code",
|
| 356 |
+
"execution_count": null,
|
| 357 |
+
"id": "20ab5784-8488-4991-8f16-85343d766baa",
|
| 358 |
+
"metadata": {},
|
| 359 |
+
"outputs": [],
|
| 360 |
+
"source": [
|
| 361 |
+
"#训练完成后,我们就可以直接使用这个模型:\n",
|
| 362 |
+
"from transformers import AutoTokenizer, AutoModel\n",
|
| 363 |
+
"import torch\n",
|
| 364 |
+
"model = AutoModel.from_pretrained('dna_gpt2_v0')\n",
|
| 365 |
+
"model"
|
| 366 |
+
]
|
| 367 |
+
},
|
| 368 |
+
{
|
| 369 |
+
"cell_type": "code",
|
| 370 |
+
"execution_count": null,
|
| 371 |
+
"id": "1ae12f89-7887-4a71-8edf-a74982f0c2c1",
|
| 372 |
+
"metadata": {},
|
| 373 |
+
"outputs": [],
|
| 374 |
+
"source": [
|
| 375 |
+
"#应用1:取特征比如是不是启动子pt\n",
|
| 376 |
+
"from transformers import AutoTokenizer, AutoModel\n",
|
| 377 |
+
"tokenizer = AutoTokenizer.from_pretrained('dna_bpe_dict')\n",
|
| 378 |
+
"tokenizer.tokenize(\"GAGCACATTCGCCTGCGTGCGCACTCACACACACGTTCAAAAAGAGTCCATTCGATTCTGGCAGTAG\")\n",
|
| 379 |
+
"#result: [G','AGCAC','ATTCGCC',....]\n",
|
| 380 |
+
"\n",
|
| 381 |
+
"#我认为tokenizer.encode是输出token ID,\n",
|
| 382 |
+
"#tokenizer.tokenize输出人类可以阅读的分词结果,\n",
|
| 383 |
+
"#tokenizer(dna)输出ID和mask用于后续步骤\n",
|
| 384 |
+
"model = AutoModel.from_pretrained('dna_gpt2_v0')\n",
|
| 385 |
+
"import torch\n",
|
| 386 |
+
"dna = \"ACGTAGCATCGGATCTATCTATCGACACTTGGTTATCGATCTACGAGCATCTCGTTAGC\"\n",
|
| 387 |
+
"inputs = tokenizer(dna, return_tensors = 'pt')#指定返回 PyTorch张量(pytorch tensor)\n",
|
| 388 |
+
"print(inputs)#输入数据并分词\n",
|
| 389 |
+
"\n",
|
| 390 |
+
"#输出用模型分析的结果\n",
|
| 391 |
+
"outputs = model(inputs[\"input_ids\"])\n",
|
| 392 |
+
"\n",
|
| 393 |
+
"#提取特征:对一条DNA序列所有Token的隐藏状态向量求平均值,\n",
|
| 394 |
+
"#从而得到一个能够代表整条序列的、固定维度的嵌入式表示(Embedding)。\n",
|
| 395 |
+
"hidden_states = outputs.last_hidden_state # [使用最后一层,1批次大小,序列长度多少个token, 768隐藏层维度] \n",
|
| 396 |
+
"\n",
|
| 397 |
+
"# embedding with mean pooling\n",
|
| 398 |
+
"embedding_mean = torch.mean(hidden_states[0], dim=0)#通过索引 [0],我们取出了批次中第一条,dim=0 指定了沿着哪个维度进行求平均。\n",
|
| 399 |
+
"#这里 dim=0 指的是沿着第0个维度(即序列长度维度,19个Token)进行���缩。\n",
|
| 400 |
+
"print(embedding_mean.shape) # expect to be 768\n",
|
| 401 |
+
"\n",
|
| 402 |
+
"# embedding with max pooling\n",
|
| 403 |
+
"embedding_max = torch.max(hidden_states[0], dim=0)[0]\n",
|
| 404 |
+
"print(embedding_max.shape) # expect to be 768\n",
|
| 405 |
+
"\n",
|
| 406 |
+
"# embedding with first token\n",
|
| 407 |
+
"embedding_first_token = hidden_states[0][0]\n",
|
| 408 |
+
"print(embedding_first_token.shape) # expect to be 768"
|
| 409 |
+
]
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"cell_type": "code",
|
| 413 |
+
"execution_count": null,
|
| 414 |
+
"id": "4ffacd74-15cb-4789-9c9b-d970be3915cf",
|
| 415 |
+
"metadata": {},
|
| 416 |
+
"outputs": [],
|
| 417 |
+
"source": [
|
| 418 |
+
"#获得embedding后开始分类,这个例子是线性全连接\n",
|
| 419 |
+
"import numpy as np\n",
|
| 420 |
+
"from sklearn.model_selection import train_test_split\n",
|
| 421 |
+
"from sklearn.linear_model import LogisticRegression\n",
|
| 422 |
+
"from sklearn.metrics import accuracy_score\n",
|
| 423 |
+
"from transformers import GPT2Tokenizer, GPT2Model\n",
|
| 424 |
+
"import torch\n",
|
| 425 |
+
"\n",
|
| 426 |
+
"X = np.array(embedding_mean) # 上面得到的embedding_mean/max/first_token,将列表转为NumPy数组,形状 (n_samples样本数, 768)\n",
|
| 427 |
+
"y = np.array(labels)\n",
|
| 428 |
+
"\n",
|
| 429 |
+
"# 划分训练集和测试集\n",
|
| 430 |
+
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
|
| 431 |
+
"\n",
|
| 432 |
+
"# 训练一个逻辑回归分类器\n",
|
| 433 |
+
"clf = LogisticRegression(random_state=42, max_iter=1000)\n",
|
| 434 |
+
"clf.fit(X_train, y_train)\n",
|
| 435 |
+
"\n",
|
| 436 |
+
"# 评估\n",
|
| 437 |
+
"accuracy = clf.score(X_test, y_test)\n",
|
| 438 |
+
"print(f\"Logistic Regression Accuracy: {accuracy:.4f}\")\n",
|
| 439 |
+
"\n",
|
| 440 |
+
"# 或者使用SVM\n",
|
| 441 |
+
"svm_clf = SVC(kernel='linear', random_state=42) # 线性核通常效果就很好\n",
|
| 442 |
+
"svm_clf.fit(X_train, y_train)\n",
|
| 443 |
+
"svm_accuracy = svm_clf.score(X_test, y_test)\n",
|
| 444 |
+
"print(f\"SVM Accuracy: {svm_accuracy:.4f}\")"
|
| 445 |
+
]
|
| 446 |
+
},
|
| 447 |
+
{
|
| 448 |
+
"cell_type": "code",
|
| 449 |
+
"execution_count": null,
|
| 450 |
+
"id": "b731af8d-0f9d-496a-9008-3e96bc98d671",
|
| 451 |
+
"metadata": {},
|
| 452 |
+
"outputs": [],
|
| 453 |
+
"source": [
|
| 454 |
+
"#获得embedding后开始分类,这个例子是神经网络\n",
|
| 455 |
+
"import torch.nn as nn\n",
|
| 456 |
+
"import torch.optim as optim\n",
|
| 457 |
+
"\n",
|
| 458 |
+
"# 定义一个简单的神经网络分类器\n",
|
| 459 |
+
"class MLPClassifier(nn.Module):\n",
|
| 460 |
+
" def __init__(self, input_dim=768, hidden_dim=256, num_classes=2):\n",
|
| 461 |
+
" super().__init__()\n",
|
| 462 |
+
" self.layers = nn.Sequential(\n",
|
| 463 |
+
" nn.Linear(input_dim, hidden_dim),\n",
|
| 464 |
+
" nn.ReLU(),\n",
|
| 465 |
+
" nn.Dropout(0.2), # 防止过拟合\n",
|
| 466 |
+
" nn.Linear(hidden_dim, num_classes)\n",
|
| 467 |
+
" )\n",
|
| 468 |
+
" \n",
|
| 469 |
+
" def forward(self, x):\n",
|
| 470 |
+
" # x 是输入的embedding,形状 [batch_size, 768]\n",
|
| 471 |
+
" return self.layers(x)\n",
|
| 472 |
+
"\n",
|
| 473 |
+
"# 使用流程\n",
|
| 474 |
+
"model = MLPClassifier(num_classes=3) # 假设是3分类任务\n",
|
| 475 |
+
"criterion = nn.CrossEntropyLoss()\n",
|
| 476 |
+
"optimizer = optim.Adam(model.parameters(), lr=1e-3)\n",
|
| 477 |
+
"\n",
|
| 478 |
+
"# 假设 train_loader 是已经准备好的PyTorch DataLoader\n",
|
| 479 |
+
"for epoch in range(10):\n",
|
| 480 |
+
" for batch_embeddings, batch_labels in train_loader:\n",
|
| 481 |
+
" optimizer.zero_grad()\n",
|
| 482 |
+
" outputs = model(batch_embeddings)\n",
|
| 483 |
+
" loss = criterion(outputs, batch_labels)\n",
|
| 484 |
+
" loss.backward()\n",
|
| 485 |
+
" optimizer.step()"
|
| 486 |
+
]
|
| 487 |
+
},
|
| 488 |
+
{
|
| 489 |
+
"cell_type": "code",
|
| 490 |
+
"execution_count": 1,
|
| 491 |
+
"id": "e0e65a6f-faeb-4333-80f5-219ac2e0211e",
|
| 492 |
+
"metadata": {},
|
| 493 |
+
"outputs": [
|
| 494 |
+
{
|
| 495 |
+
"name": "stdout",
|
| 496 |
+
"output_type": "stream",
|
| 497 |
+
"text": [
|
| 498 |
+
"/root/autodl-tmp/dnagpt2/01-data_env/data\n"
|
| 499 |
+
]
|
| 500 |
+
}
|
| 501 |
+
],
|
| 502 |
+
"source": [
|
| 503 |
+
"!pwd"
|
| 504 |
+
]
|
| 505 |
+
},
|
| 506 |
+
{
|
| 507 |
+
"cell_type": "code",
|
| 508 |
+
"execution_count": null,
|
| 509 |
+
"id": "bfc1b2f8-62a8-422e-9a83-14a56c19272e",
|
| 510 |
+
"metadata": {},
|
| 511 |
+
"outputs": [],
|
| 512 |
+
"source": []
|
| 513 |
+
}
|
| 514 |
+
],
|
| 515 |
+
"metadata": {
|
| 516 |
+
"kernelspec": {
|
| 517 |
+
"display_name": "Python 3 (ipykernel)",
|
| 518 |
+
"language": "python",
|
| 519 |
+
"name": "python3"
|
| 520 |
+
},
|
| 521 |
+
"language_info": {
|
| 522 |
+
"codemirror_mode": {
|
| 523 |
+
"name": "ipython",
|
| 524 |
+
"version": 3
|
| 525 |
+
},
|
| 526 |
+
"file_extension": ".py",
|
| 527 |
+
"mimetype": "text/x-python",
|
| 528 |
+
"name": "python",
|
| 529 |
+
"nbconvert_exporter": "python",
|
| 530 |
+
"pygments_lexer": "ipython3",
|
| 531 |
+
"version": "3.12.3"
|
| 532 |
+
}
|
| 533 |
+
},
|
| 534 |
+
"nbformat": 4,
|
| 535 |
+
"nbformat_minor": 5
|
| 536 |
+
}
|