bert-finetuned-ner
This model is a fine-tuned version of BAAI/bge-small-en-v1.5 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0805
- Precision: 0.8948
- Recall: 0.9219
- F1: 0.9082
- Accuracy: 0.9813
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.4814 | 1.0 | 625 | 0.1769 | 0.7653 | 0.8186 | 0.7910 | 0.9624 |
| 0.1733 | 2.0 | 1250 | 0.1109 | 0.8517 | 0.8918 | 0.8713 | 0.9759 |
| 0.1143 | 3.0 | 1875 | 0.0935 | 0.8498 | 0.9047 | 0.8764 | 0.9774 |
| 0.0675 | 4.0 | 2500 | 0.0851 | 0.8845 | 0.9142 | 0.8991 | 0.9805 |
| 0.055 | 5.0 | 3125 | 0.0822 | 0.8897 | 0.9159 | 0.9026 | 0.9813 |
| 0.0449 | 6.0 | 3750 | 0.0784 | 0.8927 | 0.9189 | 0.9056 | 0.9814 |
| 0.0417 | 7.0 | 4375 | 0.0791 | 0.8898 | 0.9187 | 0.9040 | 0.9812 |
| 0.0321 | 8.0 | 5000 | 0.0798 | 0.8993 | 0.9199 | 0.9095 | 0.9817 |
| 0.0301 | 9.0 | 5625 | 0.0805 | 0.8948 | 0.9219 | 0.9082 | 0.9813 |
Framework versions
- Transformers 4.53.3
- Pytorch 2.6.0+cu124
- Datasets 4.1.1
- Tokenizers 0.21.2
- Downloads last month
- 9
Model tree for fallnlove/bert-finetuned-ner
Base model
BAAI/bge-small-en-v1.5