Description
MetalGPT-1 is a model built upon the Qwen/Qwen3-32B and incorporates both continual pre-training and supervised fine-tuning on domain-specific data from the mining and metallurgy industry.
Quantization
For convenience and better efficiency, we also offer this AWQ-quantized checkpoint of the nn-tech/MetalGPT-1 model. Using AWQ 4-bit quantization greatly speeds up inference and reduces memory consumption, without significant impact on quality.
HF Usage
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer
import torch
torch.manual_seed(42)
model_name = "nn-tech/MetalGPT-1-AWQ"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
model = AutoAWQForCausalLM.from_quantized(
model_name,
device_map="auto",
)
messages=[
{"role": "system", "content": "Ты специалист в области металлургии."},
{"role": "user", "content": "Назови плюсы и минусы хлоридной и сульфатной технологии производства никеля."}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
# enable_thinking=False
)
device = next(model.parameters()).device
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=1024,
do_sample=True,
temperature=0.7,
)
# Обрезаем префикс промпта
generated_ids = [
output_ids[len(input_ids):]
for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(
generated_ids,
skip_special_tokens=True
)[0]
print(response)
VLLM usage
vllm serve nn-tech/MetalGPT-1-AWQ --reasoning-parser qwen3
from openai import OpenAI
client = OpenAI(
base_url="http://localhost:8000/v1",
api_key="dummy"
)
response = client.chat.completions.create(
model="nn-tech/MetalGPT-1-AWQ",
messages=[
{"role": "system", "content": "Ты специалист в области металлургии."},
{"role": "user", "content": "Назови плюсы и минусы хлоридной и сульфатной технологии производства никеля."}
],
temperature=0.7,
max_tokens=1024
)
print(response.choices[0].message.content)
- Downloads last month
- 98