BEVFusion: Optimized for Mobile Deployment

Construct a bird’s eye view from sensors mounted on a vehicle

BeVFusion is a machine learning model for generating a birds eye view represenation from the sensors(cameras) mounted on a vehicle.

This model is an implementation of BEVFusion found here.

This repository provides scripts to run BEVFusion on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.driver_assistance
  • Model Stats:
    • Model checkpoint: camera-only-det.pth
    • Input resolution: 1 x 6 x 3 x 256 x 704
    • Number of parameters: 44M
    • Model size: 171 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
BEVFusionEncoder1 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) PRECOMPILED_QNN_ONNX 851.341 ms 0 - 100 MB NPU Use Export Script
BEVFusionEncoder1 float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_CONTEXT_BINARY 708.316 ms 1 - 11 MB NPU Use Export Script
BEVFusionEncoder1 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_CONTEXT_BINARY 535.84 ms 13 - 31 MB NPU Use Export Script
BEVFusionEncoder1 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile PRECOMPILED_QNN_ONNX 618.606 ms 31 - 46 MB NPU Use Export Script
BEVFusionEncoder1 float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_CONTEXT_BINARY 427.006 ms 12 - 26 MB NPU Use Export Script
BEVFusionEncoder1 float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile PRECOMPILED_QNN_ONNX 506.321 ms 19 - 34 MB NPU Use Export Script
BEVFusionEncoder1 float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_CONTEXT_BINARY 361.104 ms 12 - 23 MB NPU Use Export Script
BEVFusionEncoder1 float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile PRECOMPILED_QNN_ONNX 437.45 ms 46 - 57 MB NPU Use Export Script
BEVFusionEncoder1 float Snapdragon X Elite CRD Snapdragon® X Elite QNN_CONTEXT_BINARY 689.862 ms 12 - 12 MB NPU Use Export Script
BEVFusionEncoder1 float Snapdragon X Elite CRD Snapdragon® X Elite PRECOMPILED_QNN_ONNX 813.606 ms 94 - 94 MB NPU Use Export Script
BEVFusionEncoder2 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) PRECOMPILED_QNN_ONNX 3407.415 ms 587 - 596 MB NPU Use Export Script
BEVFusionEncoder2 float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_CONTEXT_BINARY 3249.28 ms 16 - 27 MB NPU Use Export Script
BEVFusionEncoder2 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_CONTEXT_BINARY 2592.805 ms 17 - 37 MB NPU Use Export Script
BEVFusionEncoder2 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile PRECOMPILED_QNN_ONNX 2591.196 ms 596 - 615 MB NPU Use Export Script
BEVFusionEncoder2 float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_CONTEXT_BINARY 2379.048 ms 17 - 30 MB NPU Use Export Script
BEVFusionEncoder2 float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile PRECOMPILED_QNN_ONNX 2368.267 ms 474 - 485 MB NPU Use Export Script
BEVFusionEncoder2 float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_CONTEXT_BINARY 2177.685 ms 17 - 28 MB NPU Use Export Script
BEVFusionEncoder2 float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile PRECOMPILED_QNN_ONNX 2109.286 ms 49 - 59 MB NPU Use Export Script
BEVFusionEncoder2 float Snapdragon X Elite CRD Snapdragon® X Elite QNN_CONTEXT_BINARY 3348.536 ms 17 - 17 MB NPU Use Export Script
BEVFusionEncoder2 float Snapdragon X Elite CRD Snapdragon® X Elite PRECOMPILED_QNN_ONNX 3252.187 ms 1058 - 1058 MB NPU Use Export Script
BEVFusionEncoder3 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) PRECOMPILED_QNN_ONNX 548.211 ms 609 - 612 MB NPU Use Export Script
BEVFusionEncoder3 float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_CONTEXT_BINARY 719.135 ms 609 - 619 MB NPU Use Export Script
BEVFusionEncoder3 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_CONTEXT_BINARY 582.637 ms 609 - 628 MB NPU Use Export Script
BEVFusionEncoder3 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile PRECOMPILED_QNN_ONNX 456.969 ms 597 - 617 MB NPU Use Export Script
BEVFusionEncoder3 float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_CONTEXT_BINARY 503.285 ms 609 - 626 MB NPU Use Export Script
BEVFusionEncoder3 float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile PRECOMPILED_QNN_ONNX 377.651 ms 590 - 605 MB NPU Use Export Script
BEVFusionEncoder3 float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_CONTEXT_BINARY 370.888 ms 609 - 624 MB NPU Use Export Script
BEVFusionEncoder3 float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile PRECOMPILED_QNN_ONNX 331.756 ms 602 - 616 MB NPU Use Export Script
BEVFusionEncoder3 float Snapdragon X Elite CRD Snapdragon® X Elite QNN_CONTEXT_BINARY 698.865 ms 610 - 610 MB NPU Use Export Script
BEVFusionEncoder3 float Snapdragon X Elite CRD Snapdragon® X Elite PRECOMPILED_QNN_ONNX 512.279 ms 610 - 610 MB NPU Use Export Script
BEVFusionEncoder4 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) PRECOMPILED_QNN_ONNX 12.891 ms 23 - 28 MB NPU Use Export Script
BEVFusionEncoder4 float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_CONTEXT_BINARY 40.912 ms 18 - 28 MB NPU Use Export Script
BEVFusionEncoder4 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_CONTEXT_BINARY 8.926 ms 18 - 36 MB NPU Use Export Script
BEVFusionEncoder4 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile PRECOMPILED_QNN_ONNX 9.475 ms 31 - 51 MB NPU Use Export Script
BEVFusionEncoder4 float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_CONTEXT_BINARY 7.798 ms 13 - 27 MB NPU Use Export Script
BEVFusionEncoder4 float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile PRECOMPILED_QNN_ONNX 8.005 ms 12 - 23 MB NPU Use Export Script
BEVFusionEncoder4 float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_CONTEXT_BINARY 6.841 ms 18 - 30 MB NPU Use Export Script
BEVFusionEncoder4 float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile PRECOMPILED_QNN_ONNX 7.145 ms 31 - 41 MB NPU Use Export Script
BEVFusionEncoder4 float Snapdragon X Elite CRD Snapdragon® X Elite QNN_CONTEXT_BINARY 11.806 ms 19 - 19 MB NPU Use Export Script
BEVFusionEncoder4 float Snapdragon X Elite CRD Snapdragon® X Elite PRECOMPILED_QNN_ONNX 12.077 ms 19 - 19 MB NPU Use Export Script
BEVFusionDecoder float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) PRECOMPILED_QNN_ONNX 12.84 ms 14 - 16 MB NPU Use Export Script
BEVFusionDecoder float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_CONTEXT_BINARY 23.67 ms 1 - 11 MB NPU Use Export Script
BEVFusionDecoder float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_CONTEXT_BINARY 9.688 ms 5 - 23 MB NPU Use Export Script
BEVFusionDecoder float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile PRECOMPILED_QNN_ONNX 9.927 ms 16 - 35 MB NPU Use Export Script
BEVFusionDecoder float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_CONTEXT_BINARY 7.672 ms 5 - 19 MB NPU Use Export Script
BEVFusionDecoder float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile PRECOMPILED_QNN_ONNX 7.906 ms 12 - 26 MB NPU Use Export Script
BEVFusionDecoder float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_CONTEXT_BINARY 5.758 ms 5 - 16 MB NPU Use Export Script
BEVFusionDecoder float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile PRECOMPILED_QNN_ONNX 6.204 ms 17 - 28 MB NPU Use Export Script
BEVFusionDecoder float Snapdragon X Elite CRD Snapdragon® X Elite QNN_CONTEXT_BINARY 13.035 ms 5 - 5 MB NPU Use Export Script
BEVFusionDecoder float Snapdragon X Elite CRD Snapdragon® X Elite PRECOMPILED_QNN_ONNX 13.265 ms 23 - 23 MB NPU Use Export Script

Installation

Install the package via pip:

# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install "qai-hub-models[bevfusion-det]"

Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub Workbench with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.bevfusion_det.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.bevfusion_det.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.bevfusion_det.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.bevfusion_det import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on BEVFusion's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of BEVFusion can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support