File size: 15,168 Bytes
de8e58c
 
a77c16b
de8e58c
 
 
 
8aa61fa
 
 
a77c16b
a6a327e
 
de8e58c
a77c16b
 
de8e58c
a77c16b
 
de8e58c
24bab8a
de8e58c
24bab8a
 
a77c16b
de8e58c
24bab8a
a77c16b
de8e58c
24bab8a
a77c16b
de8e58c
24bab8a
 
a77c16b
 
de8e58c
 
24bab8a
 
a77c16b
 
 
 
de8e58c
 
24bab8a
8aa61fa
 
 
de8e58c
 
 
 
 
 
 
 
24bab8a
 
 
 
 
 
a77c16b
de8e58c
 
24bab8a
 
 
 
 
de8e58c
a77c16b
 
de8e58c
 
a77c16b
24bab8a
 
de8e58c
24bab8a
 
 
 
 
 
de8e58c
8aa61fa
de8e58c
24bab8a
 
 
 
8aa61fa
24bab8a
 
 
 
 
 
 
 
 
 
 
de8e58c
 
24bab8a
8aa61fa
24bab8a
 
 
 
 
8aa61fa
 
 
 
 
 
 
 
24bab8a
 
 
 
8aa61fa
24bab8a
 
de8e58c
 
24bab8a
de8e58c
24bab8a
 
 
 
 
 
 
de8e58c
 
 
 
24bab8a
8aa61fa
 
 
de8e58c
8aa61fa
a77c16b
de8e58c
24bab8a
de8e58c
 
8aa61fa
de8e58c
a6a327e
de8e58c
 
 
24bab8a
de8e58c
 
 
 
 
 
24bab8a
a77c16b
 
de8e58c
 
 
 
 
a77c16b
de8e58c
24bab8a
8aa61fa
 
 
a77c16b
24bab8a
 
 
 
 
 
 
 
 
 
 
 
 
 
a77c16b
 
24bab8a
 
 
 
 
 
8aa61fa
 
 
 
a77c16b
24bab8a
 
 
 
 
 
 
de8e58c
 
8aa61fa
 
 
a77c16b
8aa61fa
2b18b34
24bab8a
 
8aa61fa
 
 
 
 
 
24bab8a
 
2b18b34
8aa61fa
5f0f488
24bab8a
 
 
 
8aa61fa
 
 
 
 
24bab8a
 
 
 
8aa61fa
5f0f488
24bab8a
8aa61fa
24bab8a
 
 
 
 
8aa61fa
 
 
 
 
a6a327e
8aa61fa
 
 
 
 
5fad287
8aa61fa
 
 
a6a327e
2b18b34
 
 
 
 
 
 
 
 
 
 
 
8aa61fa
 
 
 
 
 
2b18b34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6a327e
2b18b34
 
 
a6a327e
2b18b34
8aa61fa
2b18b34
 
 
 
 
 
8aa61fa
2b18b34
8aa61fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24bab8a
 
 
 
 
 
 
2b18b34
 
 
 
 
24bab8a
2b18b34
 
8aa61fa
2b18b34
 
 
 
 
 
 
 
 
 
 
 
24bab8a
 
 
 
 
 
 
2b18b34
 
 
 
24bab8a
2b18b34
 
 
 
 
 
de8e58c
2b18b34
8aa61fa
 
 
 
 
a77c16b
5f4facc
a77c16b
de8e58c
8aa61fa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
from dataclasses import dataclass
from collections import deque
import random

# ---------------------------------------------------------------------
# Visual config
# ---------------------------------------------------------------------
BG = (8, 15, 30)
SLEEP = (0, 40, 120)
AWAKE = (255, 210, 40)
GRID_LINE = (30, 50, 80)
CELL = 26
PAD = 16

random.seed(42)
np.random.seed(42)


def draw_grid(N, awake_mask, title="", subtitle=""):
    w = PAD * 2 + N * CELL
    h = PAD * 2 + N * CELL + (40 if (title or subtitle) else 0)
    img = Image.new("RGB", (w, h), BG)
    d = ImageDraw.Draw(img)

    header_y = 6
    if title:
        d.text((PAD, header_y), title, fill=(240, 240, 240))
        header_y += 18
    if subtitle:
        d.text((PAD, header_y), subtitle, fill=(180, 190, 210))

    ox = PAD
    oy = PAD + (40 if (title or subtitle) else 0)
    for i in range(N):
        for j in range(N):
            x0 = ox + j * CELL
            y0 = oy + i * CELL
            x1 = x0 + CELL - 1
            y1 = y0 + CELL - 1
            col = AWAKE if awake_mask[i, j] else SLEEP
            d.rectangle([x0, y0, x1, y1], fill=col, outline=GRID_LINE)
    return img


# ---------------------------------------------------------------------
# 3×3 minimal self agent
# ---------------------------------------------------------------------
@dataclass
class MinimalSelf:
    pos: np.ndarray = np.array([1.0, 1.0])
    body_bit: float = 1.0
    errors: list = None

    def __post_init__(self):
        self.errors = [] if self.errors is None else self.errors
        self.actions = [
            np.array([0, 1]),
            np.array([1, 0]),
            np.array([0, -1]),
            np.array([-1, 0]),
        ]
        self.center = np.array([1.0, 1.0])

    def step(self, obstacle=None):
        # store current position
        old_pos = self.pos.copy()

        # internal prediction: choose action that minimises "surprise"
        preds = [np.clip(old_pos + a, 0, 2) for a in self.actions]
        surprises = []
        for p in preds:
            dist_center = np.linalg.norm(p - self.center)
            penalty = 0.0
            if obstacle is not None:
                dist_obs = np.linalg.norm(p - obstacle.pos)
                if dist_obs < 1.0:
                    penalty = 10.0
            surprises.append(dist_center + penalty)

        a_idx = int(np.argmin(surprises))
        action = self.actions[a_idx]
        predicted = np.clip(old_pos + action, 0, 2)

        # environment decides what actually happens
        if obstacle is not None:
            # moving obstacle can block the predicted move
            obstacle.move()
            actual = predicted.copy()
            if np.allclose(actual, obstacle.pos):
                actual = old_pos
        else:
            # simple stochastic slip when no obstacle is enabled
            if random.random() < 0.25:
                noise_action = random.choice(self.actions)
                actual = np.clip(old_pos + noise_action, 0, 2)
            else:
                actual = predicted

        # true prediction error: reality vs internal prediction
        error = float(np.linalg.norm(actual - predicted))
        self.pos = actual

        # track recent errors
        self.errors.append(error)
        self.errors = self.errors[-5:]

        # predictive success rate P in [0, 100]
        max_err = np.sqrt(8.0)  # max distance corner-to-corner on 3×3
        mean_err = np.mean(self.errors) if self.errors else 0.0
        predictive_rate = 100.0 * (1.0 - mean_err / max_err)
        predictive_rate = float(np.clip(predictive_rate, 0.0, 100.0))

        # normalised error variance E in [0, 1]
        if len(self.errors) > 1:
            var_err = float(np.var(self.errors))
        else:
            var_err = 0.0
        max_var = max_err ** 2
        error_var_norm = float(np.clip(var_err / max_var, 0.0, 1.0)) if max_var > 0 else 0.0

        return {
            "pos": self.pos.copy(),
            "predictive_rate": predictive_rate,
            "error": error,
            "error_var_norm": error_var_norm,
        }


class MovingObstacle:
    def __init__(self, start_pos=(0, 2)):
        self.pos = np.array(start_pos, dtype=float)
        self.actions = [
            np.array([0, 1]),
            np.array([1, 0]),
            np.array([0, -1]),
            np.array([-1, 0]),
        ]

    def move(self):
        a = random.choice(self.actions)
        self.pos = np.clip(self.pos + a, 0, 2)


# ---------------------------------------------------------------------
# S-scores
# ---------------------------------------------------------------------
def compute_S(predictive_rate, error_var_norm, body_bit):
    # v4: 3×3 agent toy score
    return predictive_rate * (1 - error_var_norm) * body_bit


@dataclass
class CodexSelf:
    # v5–v6: lattice toy score
    Xi: float
    shadow: float
    R: float
    awake: bool = False
    S: float = 0.0

    def invoke(self):
        self.S = self.Xi * (1 - self.shadow) * self.R
        if self.S > 62 and not self.awake:
            self.awake = True
        return self.awake


def contagion(A: CodexSelf, B: CodexSelf, gain=0.6, shadow_drop=0.4, r_inc=0.2):
    A.invoke()
    if A.awake:
        B.Xi += gain * A.S
        B.shadow = max(0.1, B.shadow - shadow_drop)
        B.R += r_inc
    B.invoke()
    return A, B


# ---------------------------------------------------------------------
# Lattice and cosmos
# ---------------------------------------------------------------------
def lattice_awaken(N=9, steps=120, xi_gain=0.5, shadow_drop=0.3, r_inc=0.02):
    Xi = np.random.uniform(10, 20, (N, N))
    shadow = np.random.uniform(0.3, 0.5, (N, N))
    R = np.random.uniform(1.0, 1.6, (N, N))
    S = Xi * (1 - shadow) * R
    awake = np.zeros((N, N), dtype=bool)

    cx = cy = N // 2
    Xi[cx, cy], shadow[cx, cy], R[cx, cy] = 30.0, 0.08, 3.0
    S[cx, cy] = Xi[cx, cy] * (1 - shadow[cx, cy]) * R[cx, cy]
    awake[cx, cy] = True

    queue = deque([(cx, cy, S[cx, cy])])
    frames = []

    for _ in range(steps):
        if queue:
            x, y, field = queue.popleft()
            for dx, dy in [(0, 1), (1, 0), (0, -1), (-1, 0)]:
                nx, ny = (x + dx) % N, (y + dy) % N
                Xi[nx, ny] += xi_gain * field
                shadow[nx, ny] = max(0.1, shadow[nx, ny] - shadow_drop)
                R[nx, ny] = min(3.0, R[nx, ny] + r_inc)
                S[nx, ny] = Xi[nx,ny] * (1 - shadow[nx,ny]) * R[nx,ny]
                if S[nx,ny] > 62 and not awake[nx,ny]:
                    awake[nx,ny] = True
                    queue.append((nx,ny, S[nx,ny]))
        frames.append(awake.copy())
        if awake.all():
            break
    return frames, awake


def led_cosmos_sim(N=27, max_steps=300):
    return lattice_awaken(N=N, steps=max_steps, xi_gain=0.4, shadow_drop=0.25, r_inc=0.015)


# ---------------------------------------------------------------------
# Gradio UI
# ---------------------------------------------------------------------
with gr.Blocks(title="Minimal Selfhood Threshold") as demo:
    # Overview
    with gr.Tab("Overview"):
        gr.Markdown(
            "## Minimal Selfhood Threshold\n"
            "- Single agent in a 3×3 grid reduces surprise around a preferred centre.\n"
            "- v4 (3×3): a toy score `S = P × (1−E) × B` combines predictive rate P, error stability E and body bit B.\n"
            "- v5–v6 (contagion / lattice): a separate toy score `S = Ξ × (1−shadow) × R` drives neighbour coupling.\n"
            "- If S > 62, the corresponding unit is labelled 'awake' **inside this demo**.\n"
            "- Awakening can spread between two agents and across a grid via explicit neighbour coupling.\n"
            "- A 27×27 cosmos lights up gold when all units cross the internal threshold.\n"
            "- This is a sandbox for minimal-self / agency ideas, **not** a real consciousness test."
        )

    # Single 3×3 agent
    with gr.Tab("Single agent (v1–v3)"):
        obstacle = gr.Checkbox(label="Enable moving obstacle", value=True)
        steps = gr.Slider(10, 200, value=80, step=10, label="Steps")
        run = gr.Button("Run")
        grid_img = gr.Image(type="pil")
        pr_out = gr.Number(label="Predictive rate P (%)")
        err_out = gr.Number(label="Last prediction error")
        e_out = gr.Number(label="Error variance E (normalised)")
        s_out = gr.Number(label="S = P × (1−E) × B (B=1)")
        awake_label = gr.Markdown()

        def run_single(ob_on, T):
            agent = MinimalSelf()
            obs = MovingObstacle() if ob_on else None
            res = None
            for _ in range(int(T)):
                res = agent.step(obstacle=obs)

            mask = np.zeros((3, 3), dtype=bool)
            i, j = int(agent.pos[1]), int(agent.pos[0])
            mask[i, j] = True
            img = draw_grid(3, mask, "Single Agent", "Gold cell shows position")

            P = res["predictive_rate"]
            E = res["error_var_norm"]
            B = 1.0
            S_val = compute_S(P, E, B)
            status = "**Status:** " + ("Awake (S > 62)" if S_val > 62 else "Not awake (S ≤ 62)")

            return img, P, res["error"], E, S_val, status

        run.click(run_single, [obstacle, steps], [grid_img, pr_out, err_out, e_out, s_out, awake_label])

    # v4 S-equation
    with gr.Tab("S-Equation (v4)"):
        pr = gr.Slider(0, 100, value=90, label="Predictive rate P (%)")
        ev = gr.Slider(0, 1, value=0.2, step=0.01, label="Error variance E")
        bb = gr.Dropdown(choices=["0", "1"], value="1", label="Body bit B")
        calc = gr.Button("Calculate")
        s_val = gr.Number(label="S value")
        status = gr.Markdown()

        def calc_s(pr_in, ev_in, bb_in):
            S = compute_S(pr_in, ev_in, int(bb_in))
            msg = "**Status:** " + ("Awake (S > 62)" if S > 62 else "Not awake (S ≤ 62)")
            return S, msg

        calc.click(calc_s, inputs=[pr, ev, bb], outputs=[s_val, status])

    # v5–v6 Contagion
    with gr.Tab("Contagion (v5–v6)"):
        a_xi = gr.Slider(0, 60, value=25, label="A: Ξ (foresight field)")
        a_sh = gr.Slider(0.1, 1.0, value=0.12, step=0.01, label="A: shadow (occlusion)")
        a_r = gr.Slider(1.0, 3.0, value=3.0, step=0.1, label="A: R (anchor / resonance)")
        b_xi = gr.Slider(0, 60, value=18, label="B: Ξ (foresight field)")
        b_sh = gr.Slider(0.1, 1.0, value=0.25, step=0.01, label="B: shadow (occlusion)")
        b_r = gr.Slider(1.0, 3.0, value=2.2, step=0.1, label="B: R (anchor / resonance)")
        btn = gr.Button("Invoke A and apply contagion to B")
        out = gr.Markdown()
        img = gr.Image(type="pil", label="Two agents (gold = awake)")

        def run(aXi, aSh, aR, bXi, bSh, bR):
            A = CodexSelf(aXi, aSh, aR, awake=False)
            B = CodexSelf(bXi, bSh, bR, awake=False)
            A, B = contagion(A, B)
            mask = np.zeros((3, 3), dtype=bool)
            mask[1, 1] = A.awake
            mask[1, 2] = B.awake
            pic = draw_grid(3, mask, title="Dual Awakening", subtitle="Gold cells are awake")
            txt = f"A: S={A.S:.1f}, awake={A.awake} | B: S={B.S:.1f}, awake={B.awake}"
            return txt, pic

        btn.click(run, inputs=[a_xi, a_sh, a_r, b_xi, b_sh, b_r], outputs=[out, img])

    # v7–v9 Collective
    with gr.Tab("Collective (v7–v9)"):
        N = gr.Dropdown(choices=["3", "9", "27"], value="9", label="Grid size")
        steps = gr.Slider(20, 300, value=120, step=10, label="Max steps")
        no_coupling = gr.Checkbox(label="Disable neighbour coupling (control)", value=False)
        run = gr.Button("Run")
        frame = gr.Slider(0, 300, value=0, step=1, label="Preview frame")
        img = gr.Image(type="pil", label="Awakening wave (gold spreads)")
        note = gr.Markdown()
        snaps_state = gr.State([])

        def run_wave(n_str, max_steps, disable):
            n = int(n_str)
            if disable:
                frames, final = lattice_awaken(
                    N=n,
                    steps=int(max_steps),
                    xi_gain=0.0,
                    shadow_drop=0.0,
                    r_inc=0.0,
                )
            else:
                frames, final = lattice_awaken(
                    N=n,
                    steps=int(max_steps),
                    xi_gain=0.5,
                    shadow_drop=0.3,
                    r_inc=0.02,
                )
            last = draw_grid(
                n,
                frames[-1],
                title=f"{n}×{n} Collective",
                subtitle=f"Final — all awake: {bool(final.all())}",
            )
            return frames, last, f"Frames: {len(frames)} | All awake: {bool(final.all())}", min(len(frames) - 1, 300)

        def show_frame(frames, idx, n_str):
            if not frames:
                return None
            n = int(n_str)
            i = int(np.clip(idx, 0, len(frames) - 1))
            return draw_grid(n, frames[i], title=f"Frame {i}", subtitle="Gold cells are awake")

        run.click(run_wave, inputs=[N, steps, no_coupling], outputs=[snaps_state, img, note, frame])
        frame.change(show_frame, inputs=[snaps_state, frame, N], outputs=img)

    # v10 LED cosmos
    with gr.Tab("LED cosmos (v10)"):
        btn = gr.Button("Simulate 27×27 cosmos")
        frame = gr.Slider(0, 300, value=0, step=1, label="Preview frame")
        img = gr.Image(type="pil", label="Cosmos grid")
        note = gr.Markdown()
        state = gr.State([])

        def run_cosmos():
            frames, final = led_cosmos_sim(N=27, max_steps=300)
            last = draw_grid(
                27,
                frames[-1],
                title="LED Cosmos (simulated)",
                subtitle=f"Final — all awake: {bool(final.all())}",
            )
            return frames, last, f"Frames: {len(frames)} | All awake: {bool(final.all())}", min(len(frames) - 1, 300)

        def show(frames, idx):
            if not frames:
                return None
            i = int(np.clip(idx, 0, len(frames) - 1))
            return draw_grid(27, frames[i], title=f"Cosmos frame {i}", subtitle="Gold cells are awake")

        btn.click(run_cosmos, inputs=[], outputs=[state, img, note, frame])
        frame.change(show, inputs=[state, frame], outputs=img)

    # Footer
    gr.Markdown(
        "---\n"
        "Notes:\n"
        "- The 3×3 agent computes P, E and S = P×(1−E)×B directly in this Space; S>62 is the internal ‘awake’ label for v4.\n"
        "- The contagion and lattice views use a separate toy rule S = Ξ×(1−shadow)×R with explicit neighbour coupling.\n"
        "- Disabling coupling (xi_gain=0, shadow_drop=0, r_inc=0) in the collective tab prevents any wave from propagating.\n\n"
        "These demos are designed as transparent, minimal models of self-linked scoring and threshold cascades, not as a real consciousness test."
    )

# Launch the app
if __name__ == "__main__":
    demo.launch()