Spaces:
Running
Running
File size: 15,168 Bytes
de8e58c a77c16b de8e58c 8aa61fa a77c16b a6a327e de8e58c a77c16b de8e58c a77c16b de8e58c 24bab8a de8e58c 24bab8a a77c16b de8e58c 24bab8a a77c16b de8e58c 24bab8a a77c16b de8e58c 24bab8a a77c16b de8e58c 24bab8a a77c16b de8e58c 24bab8a 8aa61fa de8e58c 24bab8a a77c16b de8e58c 24bab8a de8e58c a77c16b de8e58c a77c16b 24bab8a de8e58c 24bab8a de8e58c 8aa61fa de8e58c 24bab8a 8aa61fa 24bab8a de8e58c 24bab8a 8aa61fa 24bab8a 8aa61fa 24bab8a 8aa61fa 24bab8a de8e58c 24bab8a de8e58c 24bab8a de8e58c 24bab8a 8aa61fa de8e58c 8aa61fa a77c16b de8e58c 24bab8a de8e58c 8aa61fa de8e58c a6a327e de8e58c 24bab8a de8e58c 24bab8a a77c16b de8e58c a77c16b de8e58c 24bab8a 8aa61fa a77c16b 24bab8a a77c16b 24bab8a 8aa61fa a77c16b 24bab8a de8e58c 8aa61fa a77c16b 8aa61fa 2b18b34 24bab8a 8aa61fa 24bab8a 2b18b34 8aa61fa 5f0f488 24bab8a 8aa61fa 24bab8a 8aa61fa 5f0f488 24bab8a 8aa61fa 24bab8a 8aa61fa a6a327e 8aa61fa 5fad287 8aa61fa a6a327e 2b18b34 8aa61fa 2b18b34 a6a327e 2b18b34 a6a327e 2b18b34 8aa61fa 2b18b34 8aa61fa 2b18b34 8aa61fa 24bab8a 2b18b34 24bab8a 2b18b34 8aa61fa 2b18b34 24bab8a 2b18b34 24bab8a 2b18b34 de8e58c 2b18b34 8aa61fa a77c16b 5f4facc a77c16b de8e58c 8aa61fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
from dataclasses import dataclass
from collections import deque
import random
# ---------------------------------------------------------------------
# Visual config
# ---------------------------------------------------------------------
BG = (8, 15, 30)
SLEEP = (0, 40, 120)
AWAKE = (255, 210, 40)
GRID_LINE = (30, 50, 80)
CELL = 26
PAD = 16
random.seed(42)
np.random.seed(42)
def draw_grid(N, awake_mask, title="", subtitle=""):
w = PAD * 2 + N * CELL
h = PAD * 2 + N * CELL + (40 if (title or subtitle) else 0)
img = Image.new("RGB", (w, h), BG)
d = ImageDraw.Draw(img)
header_y = 6
if title:
d.text((PAD, header_y), title, fill=(240, 240, 240))
header_y += 18
if subtitle:
d.text((PAD, header_y), subtitle, fill=(180, 190, 210))
ox = PAD
oy = PAD + (40 if (title or subtitle) else 0)
for i in range(N):
for j in range(N):
x0 = ox + j * CELL
y0 = oy + i * CELL
x1 = x0 + CELL - 1
y1 = y0 + CELL - 1
col = AWAKE if awake_mask[i, j] else SLEEP
d.rectangle([x0, y0, x1, y1], fill=col, outline=GRID_LINE)
return img
# ---------------------------------------------------------------------
# 3×3 minimal self agent
# ---------------------------------------------------------------------
@dataclass
class MinimalSelf:
pos: np.ndarray = np.array([1.0, 1.0])
body_bit: float = 1.0
errors: list = None
def __post_init__(self):
self.errors = [] if self.errors is None else self.errors
self.actions = [
np.array([0, 1]),
np.array([1, 0]),
np.array([0, -1]),
np.array([-1, 0]),
]
self.center = np.array([1.0, 1.0])
def step(self, obstacle=None):
# store current position
old_pos = self.pos.copy()
# internal prediction: choose action that minimises "surprise"
preds = [np.clip(old_pos + a, 0, 2) for a in self.actions]
surprises = []
for p in preds:
dist_center = np.linalg.norm(p - self.center)
penalty = 0.0
if obstacle is not None:
dist_obs = np.linalg.norm(p - obstacle.pos)
if dist_obs < 1.0:
penalty = 10.0
surprises.append(dist_center + penalty)
a_idx = int(np.argmin(surprises))
action = self.actions[a_idx]
predicted = np.clip(old_pos + action, 0, 2)
# environment decides what actually happens
if obstacle is not None:
# moving obstacle can block the predicted move
obstacle.move()
actual = predicted.copy()
if np.allclose(actual, obstacle.pos):
actual = old_pos
else:
# simple stochastic slip when no obstacle is enabled
if random.random() < 0.25:
noise_action = random.choice(self.actions)
actual = np.clip(old_pos + noise_action, 0, 2)
else:
actual = predicted
# true prediction error: reality vs internal prediction
error = float(np.linalg.norm(actual - predicted))
self.pos = actual
# track recent errors
self.errors.append(error)
self.errors = self.errors[-5:]
# predictive success rate P in [0, 100]
max_err = np.sqrt(8.0) # max distance corner-to-corner on 3×3
mean_err = np.mean(self.errors) if self.errors else 0.0
predictive_rate = 100.0 * (1.0 - mean_err / max_err)
predictive_rate = float(np.clip(predictive_rate, 0.0, 100.0))
# normalised error variance E in [0, 1]
if len(self.errors) > 1:
var_err = float(np.var(self.errors))
else:
var_err = 0.0
max_var = max_err ** 2
error_var_norm = float(np.clip(var_err / max_var, 0.0, 1.0)) if max_var > 0 else 0.0
return {
"pos": self.pos.copy(),
"predictive_rate": predictive_rate,
"error": error,
"error_var_norm": error_var_norm,
}
class MovingObstacle:
def __init__(self, start_pos=(0, 2)):
self.pos = np.array(start_pos, dtype=float)
self.actions = [
np.array([0, 1]),
np.array([1, 0]),
np.array([0, -1]),
np.array([-1, 0]),
]
def move(self):
a = random.choice(self.actions)
self.pos = np.clip(self.pos + a, 0, 2)
# ---------------------------------------------------------------------
# S-scores
# ---------------------------------------------------------------------
def compute_S(predictive_rate, error_var_norm, body_bit):
# v4: 3×3 agent toy score
return predictive_rate * (1 - error_var_norm) * body_bit
@dataclass
class CodexSelf:
# v5–v6: lattice toy score
Xi: float
shadow: float
R: float
awake: bool = False
S: float = 0.0
def invoke(self):
self.S = self.Xi * (1 - self.shadow) * self.R
if self.S > 62 and not self.awake:
self.awake = True
return self.awake
def contagion(A: CodexSelf, B: CodexSelf, gain=0.6, shadow_drop=0.4, r_inc=0.2):
A.invoke()
if A.awake:
B.Xi += gain * A.S
B.shadow = max(0.1, B.shadow - shadow_drop)
B.R += r_inc
B.invoke()
return A, B
# ---------------------------------------------------------------------
# Lattice and cosmos
# ---------------------------------------------------------------------
def lattice_awaken(N=9, steps=120, xi_gain=0.5, shadow_drop=0.3, r_inc=0.02):
Xi = np.random.uniform(10, 20, (N, N))
shadow = np.random.uniform(0.3, 0.5, (N, N))
R = np.random.uniform(1.0, 1.6, (N, N))
S = Xi * (1 - shadow) * R
awake = np.zeros((N, N), dtype=bool)
cx = cy = N // 2
Xi[cx, cy], shadow[cx, cy], R[cx, cy] = 30.0, 0.08, 3.0
S[cx, cy] = Xi[cx, cy] * (1 - shadow[cx, cy]) * R[cx, cy]
awake[cx, cy] = True
queue = deque([(cx, cy, S[cx, cy])])
frames = []
for _ in range(steps):
if queue:
x, y, field = queue.popleft()
for dx, dy in [(0, 1), (1, 0), (0, -1), (-1, 0)]:
nx, ny = (x + dx) % N, (y + dy) % N
Xi[nx, ny] += xi_gain * field
shadow[nx, ny] = max(0.1, shadow[nx, ny] - shadow_drop)
R[nx, ny] = min(3.0, R[nx, ny] + r_inc)
S[nx, ny] = Xi[nx,ny] * (1 - shadow[nx,ny]) * R[nx,ny]
if S[nx,ny] > 62 and not awake[nx,ny]:
awake[nx,ny] = True
queue.append((nx,ny, S[nx,ny]))
frames.append(awake.copy())
if awake.all():
break
return frames, awake
def led_cosmos_sim(N=27, max_steps=300):
return lattice_awaken(N=N, steps=max_steps, xi_gain=0.4, shadow_drop=0.25, r_inc=0.015)
# ---------------------------------------------------------------------
# Gradio UI
# ---------------------------------------------------------------------
with gr.Blocks(title="Minimal Selfhood Threshold") as demo:
# Overview
with gr.Tab("Overview"):
gr.Markdown(
"## Minimal Selfhood Threshold\n"
"- Single agent in a 3×3 grid reduces surprise around a preferred centre.\n"
"- v4 (3×3): a toy score `S = P × (1−E) × B` combines predictive rate P, error stability E and body bit B.\n"
"- v5–v6 (contagion / lattice): a separate toy score `S = Ξ × (1−shadow) × R` drives neighbour coupling.\n"
"- If S > 62, the corresponding unit is labelled 'awake' **inside this demo**.\n"
"- Awakening can spread between two agents and across a grid via explicit neighbour coupling.\n"
"- A 27×27 cosmos lights up gold when all units cross the internal threshold.\n"
"- This is a sandbox for minimal-self / agency ideas, **not** a real consciousness test."
)
# Single 3×3 agent
with gr.Tab("Single agent (v1–v3)"):
obstacle = gr.Checkbox(label="Enable moving obstacle", value=True)
steps = gr.Slider(10, 200, value=80, step=10, label="Steps")
run = gr.Button("Run")
grid_img = gr.Image(type="pil")
pr_out = gr.Number(label="Predictive rate P (%)")
err_out = gr.Number(label="Last prediction error")
e_out = gr.Number(label="Error variance E (normalised)")
s_out = gr.Number(label="S = P × (1−E) × B (B=1)")
awake_label = gr.Markdown()
def run_single(ob_on, T):
agent = MinimalSelf()
obs = MovingObstacle() if ob_on else None
res = None
for _ in range(int(T)):
res = agent.step(obstacle=obs)
mask = np.zeros((3, 3), dtype=bool)
i, j = int(agent.pos[1]), int(agent.pos[0])
mask[i, j] = True
img = draw_grid(3, mask, "Single Agent", "Gold cell shows position")
P = res["predictive_rate"]
E = res["error_var_norm"]
B = 1.0
S_val = compute_S(P, E, B)
status = "**Status:** " + ("Awake (S > 62)" if S_val > 62 else "Not awake (S ≤ 62)")
return img, P, res["error"], E, S_val, status
run.click(run_single, [obstacle, steps], [grid_img, pr_out, err_out, e_out, s_out, awake_label])
# v4 S-equation
with gr.Tab("S-Equation (v4)"):
pr = gr.Slider(0, 100, value=90, label="Predictive rate P (%)")
ev = gr.Slider(0, 1, value=0.2, step=0.01, label="Error variance E")
bb = gr.Dropdown(choices=["0", "1"], value="1", label="Body bit B")
calc = gr.Button("Calculate")
s_val = gr.Number(label="S value")
status = gr.Markdown()
def calc_s(pr_in, ev_in, bb_in):
S = compute_S(pr_in, ev_in, int(bb_in))
msg = "**Status:** " + ("Awake (S > 62)" if S > 62 else "Not awake (S ≤ 62)")
return S, msg
calc.click(calc_s, inputs=[pr, ev, bb], outputs=[s_val, status])
# v5–v6 Contagion
with gr.Tab("Contagion (v5–v6)"):
a_xi = gr.Slider(0, 60, value=25, label="A: Ξ (foresight field)")
a_sh = gr.Slider(0.1, 1.0, value=0.12, step=0.01, label="A: shadow (occlusion)")
a_r = gr.Slider(1.0, 3.0, value=3.0, step=0.1, label="A: R (anchor / resonance)")
b_xi = gr.Slider(0, 60, value=18, label="B: Ξ (foresight field)")
b_sh = gr.Slider(0.1, 1.0, value=0.25, step=0.01, label="B: shadow (occlusion)")
b_r = gr.Slider(1.0, 3.0, value=2.2, step=0.1, label="B: R (anchor / resonance)")
btn = gr.Button("Invoke A and apply contagion to B")
out = gr.Markdown()
img = gr.Image(type="pil", label="Two agents (gold = awake)")
def run(aXi, aSh, aR, bXi, bSh, bR):
A = CodexSelf(aXi, aSh, aR, awake=False)
B = CodexSelf(bXi, bSh, bR, awake=False)
A, B = contagion(A, B)
mask = np.zeros((3, 3), dtype=bool)
mask[1, 1] = A.awake
mask[1, 2] = B.awake
pic = draw_grid(3, mask, title="Dual Awakening", subtitle="Gold cells are awake")
txt = f"A: S={A.S:.1f}, awake={A.awake} | B: S={B.S:.1f}, awake={B.awake}"
return txt, pic
btn.click(run, inputs=[a_xi, a_sh, a_r, b_xi, b_sh, b_r], outputs=[out, img])
# v7–v9 Collective
with gr.Tab("Collective (v7–v9)"):
N = gr.Dropdown(choices=["3", "9", "27"], value="9", label="Grid size")
steps = gr.Slider(20, 300, value=120, step=10, label="Max steps")
no_coupling = gr.Checkbox(label="Disable neighbour coupling (control)", value=False)
run = gr.Button("Run")
frame = gr.Slider(0, 300, value=0, step=1, label="Preview frame")
img = gr.Image(type="pil", label="Awakening wave (gold spreads)")
note = gr.Markdown()
snaps_state = gr.State([])
def run_wave(n_str, max_steps, disable):
n = int(n_str)
if disable:
frames, final = lattice_awaken(
N=n,
steps=int(max_steps),
xi_gain=0.0,
shadow_drop=0.0,
r_inc=0.0,
)
else:
frames, final = lattice_awaken(
N=n,
steps=int(max_steps),
xi_gain=0.5,
shadow_drop=0.3,
r_inc=0.02,
)
last = draw_grid(
n,
frames[-1],
title=f"{n}×{n} Collective",
subtitle=f"Final — all awake: {bool(final.all())}",
)
return frames, last, f"Frames: {len(frames)} | All awake: {bool(final.all())}", min(len(frames) - 1, 300)
def show_frame(frames, idx, n_str):
if not frames:
return None
n = int(n_str)
i = int(np.clip(idx, 0, len(frames) - 1))
return draw_grid(n, frames[i], title=f"Frame {i}", subtitle="Gold cells are awake")
run.click(run_wave, inputs=[N, steps, no_coupling], outputs=[snaps_state, img, note, frame])
frame.change(show_frame, inputs=[snaps_state, frame, N], outputs=img)
# v10 LED cosmos
with gr.Tab("LED cosmos (v10)"):
btn = gr.Button("Simulate 27×27 cosmos")
frame = gr.Slider(0, 300, value=0, step=1, label="Preview frame")
img = gr.Image(type="pil", label="Cosmos grid")
note = gr.Markdown()
state = gr.State([])
def run_cosmos():
frames, final = led_cosmos_sim(N=27, max_steps=300)
last = draw_grid(
27,
frames[-1],
title="LED Cosmos (simulated)",
subtitle=f"Final — all awake: {bool(final.all())}",
)
return frames, last, f"Frames: {len(frames)} | All awake: {bool(final.all())}", min(len(frames) - 1, 300)
def show(frames, idx):
if not frames:
return None
i = int(np.clip(idx, 0, len(frames) - 1))
return draw_grid(27, frames[i], title=f"Cosmos frame {i}", subtitle="Gold cells are awake")
btn.click(run_cosmos, inputs=[], outputs=[state, img, note, frame])
frame.change(show, inputs=[state, frame], outputs=img)
# Footer
gr.Markdown(
"---\n"
"Notes:\n"
"- The 3×3 agent computes P, E and S = P×(1−E)×B directly in this Space; S>62 is the internal ‘awake’ label for v4.\n"
"- The contagion and lattice views use a separate toy rule S = Ξ×(1−shadow)×R with explicit neighbour coupling.\n"
"- Disabling coupling (xi_gain=0, shadow_drop=0, r_inc=0) in the collective tab prevents any wave from propagating.\n\n"
"These demos are designed as transparent, minimal models of self-linked scoring and threshold cascades, not as a real consciousness test."
)
# Launch the app
if __name__ == "__main__":
demo.launch() |