Tunnel_defext / streamlit_app.py
Sompote's picture
Upload 392 files
12e6fed verified
#!/usr/bin/env python3
"""
Tunnel Crack Detection Streamlit App
A Streamlit-based web interface for tunnel crack detection using YOLOv12-DINO.
Upload images and get real-time crack detection results with interactive controls.
"""
import streamlit as st
import cv2
import numpy as np
import pandas as pd
from pathlib import Path
import tempfile
import os
import sys
from typing import Dict, List, Tuple
import time
from PIL import Image
import plotly.express as px
import plotly.graph_objects as go
# Add the current directory to the Python path
current_dir = Path(__file__).parent
sys.path.insert(0, str(current_dir))
try:
from inference import YOLOInference
except ImportError as e:
st.error(f"Error importing inference module: {e}")
st.stop()
# Page configuration
st.set_page_config(
page_title="Tunnel Crack Detection",
page_icon="πŸ”",
layout="wide",
initial_sidebar_state="expanded"
)
# Configure large file uploads
import streamlit.web.bootstrap
try:
# Set large upload size (5GB in MB)
if hasattr(st, '_config'):
st._config.set_option('server.maxUploadSize', 5000)
else:
# For newer Streamlit versions
from streamlit import config
config.set_option('server.maxUploadSize', 5000)
config.set_option('server.maxMessageSize', 5000)
except Exception:
pass
# Set environment variable for large files (5GB in MB)
os.environ['STREAMLIT_SERVER_MAX_UPLOAD_SIZE'] = '5000'
# Custom CSS for better styling
st.markdown("""
<style>
.main-header {
font-size: 3rem;
color: #1e88e5;
text-align: center;
margin-bottom: 2rem;
}
.metric-card {
background-color: #f0f2f6;
padding: 1rem;
border-radius: 0.5rem;
margin: 0.5rem 0;
}
.detection-box {
border: 2px solid #1e88e5;
border-radius: 0.5rem;
padding: 1rem;
margin: 1rem 0;
background-color: #f8f9fa;
}
.success-box {
border: 2px solid #4caf50;
border-radius: 0.5rem;
padding: 1rem;
margin: 1rem 0;
background-color: #f1f8e9;
}
.error-box {
border: 2px solid #f44336;
border-radius: 0.5rem;
padding: 1rem;
margin: 1rem 0;
background-color: #ffebee;
}
.warning-box {
border: 2px solid #ff9800;
border-radius: 0.5rem;
padding: 1rem;
margin: 1rem 0;
background-color: #fff3e0;
}
</style>
""", unsafe_allow_html=True)
# Initialize session state
if 'model_loaded' not in st.session_state:
st.session_state.model_loaded = False
if 'model_instance' not in st.session_state:
st.session_state.model_instance = None
if 'detection_history' not in st.session_state:
st.session_state.detection_history = []
# Default model weight path
DEFAULT_WEIGHTS_PATH = "/Users/sompoteyouwai/env/model_weight/segment_defect.pt"
def load_model(weights_path: str, device: str = "cpu") -> Tuple[bool, str]:
"""Load the YOLO model with specified weights."""
try:
if not Path(weights_path).exists():
return False, f"❌ Model file not found: {weights_path}"
with st.spinner("Loading tunnel crack detection model..."):
st.session_state.model_instance = YOLOInference(
weights=weights_path,
conf=0.25,
iou=0.7,
imgsz=640,
device=device,
verbose=True
)
st.session_state.model_loaded = True
# Get model information
model_info = f"βœ… Model loaded successfully\n"
model_info += f"πŸ“‹ Task: {st.session_state.model_instance.model.task}\n"
if hasattr(st.session_state.model_instance.model.model, 'names'):
class_names = list(st.session_state.model_instance.model.model.names.values())
model_info += f"🏷️ Classes ({len(class_names)}): {', '.join(class_names)}"
return True, model_info
except Exception as e:
return False, f"❌ Error loading model: {str(e)}"
def perform_detection(
image: np.ndarray,
conf_threshold: float,
iou_threshold: float,
image_size: int
) -> Tuple[np.ndarray, Dict, str]:
"""Perform crack detection using the loaded model."""
if st.session_state.model_instance is None:
return None, {}, "❌ No model loaded"
try:
# Update model parameters
st.session_state.model_instance.conf = conf_threshold
st.session_state.model_instance.iou = iou_threshold
st.session_state.model_instance.imgsz = image_size
# Save image to temporary file
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as tmp_file:
# Convert RGB to BGR for OpenCV
image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
cv2.imwrite(tmp_file.name, image_bgr)
tmp_path = tmp_file.name
start_time = time.time()
try:
# Use the exact same method as inference.py
results = st.session_state.model_instance.predict_single(
source=tmp_path,
save=False,
show=False,
save_txt=False,
save_conf=False,
save_crop=False,
output_dir=None
)
inference_time = time.time() - start_time
if not results:
return image, {}, "❌ No results returned from model"
result = results[0]
# Get annotated image
annotated_img = result.plot()
annotated_img = cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB)
# Process detection results
detection_data = process_detection_results(result, inference_time)
# Generate summary text
summary_text = generate_detection_summary(result, detection_data, inference_time)
return annotated_img, detection_data, summary_text
finally:
# Clean up temporary file
if os.path.exists(tmp_path):
os.unlink(tmp_path)
except Exception as e:
return None, {}, f"❌ Error during detection: {str(e)}"
def process_detection_results(result, inference_time: float) -> Dict:
"""Process detection results into structured data."""
if result.boxes is None or len(result.boxes) == 0:
return {
'total_detections': 0,
'class_counts': {},
'detections': [],
'inference_time': inference_time
}
detections = result.boxes
# Get class names
if hasattr(st.session_state.model_instance.model.model, 'names'):
class_names = st.session_state.model_instance.model.model.names
else:
class_names = getattr(result, 'names', {i: f"Class_{i}" for i in range(100)})
# Process each detection
detection_list = []
class_counts = {}
for i, (box, conf, cls) in enumerate(zip(detections.xyxy, detections.conf, detections.cls)):
cls_id = int(cls)
cls_name = class_names.get(cls_id, f"Class_{cls_id}")
confidence = float(conf)
x1, y1, x2, y2 = box.tolist()
detection_list.append({
'id': i + 1,
'class': cls_name,
'confidence': confidence,
'x1': int(x1),
'y1': int(y1),
'x2': int(x2),
'y2': int(y2),
'width': int(x2 - x1),
'height': int(y2 - y1),
'area': int((x2 - x1) * (y2 - y1))
})
class_counts[cls_name] = class_counts.get(cls_name, 0) + 1
return {
'total_detections': len(detection_list),
'class_counts': class_counts,
'detections': detection_list,
'inference_time': inference_time
}
def generate_detection_summary(result, detection_data: Dict, inference_time: float) -> str:
"""Generate detection summary text."""
total_detections = detection_data['total_detections']
if total_detections == 0:
return "πŸ” No cracks or defects detected in the image."
summary = f"βœ… **Detection Results:**\n\n"
summary += f"πŸ“Š **Images processed:** 1\n"
summary += f"πŸ“Š **Total detections:** {total_detections}\n"
summary += f"⏱️ **Inference time:** {inference_time:.3f}s\n\n"
summary += "πŸ“‹ **Detections by class:**\n"
for cls_name, count in sorted(detection_data['class_counts'].items()):
summary += f" β€’ {cls_name}: {count}\n"
return summary
def create_detection_chart(detection_data: Dict):
"""Create interactive charts for detection results."""
if detection_data['total_detections'] == 0:
st.info("No detections to visualize")
return
# Class distribution pie chart
class_counts = detection_data['class_counts']
fig_pie = px.pie(
values=list(class_counts.values()),
names=list(class_counts.keys()),
title="Detection Distribution by Class",
color_discrete_sequence=px.colors.qualitative.Set3
)
fig_pie.update_layout(height=400)
st.plotly_chart(fig_pie, use_container_width=True)
# Confidence distribution
confidences = [det['confidence'] for det in detection_data['detections']]
classes = [det['class'] for det in detection_data['detections']]
fig_conf = px.box(
x=classes,
y=confidences,
title="Confidence Distribution by Class",
color=classes
)
fig_conf.update_layout(height=400)
fig_conf.update_xaxes(title="Class")
fig_conf.update_yaxes(title="Confidence Score")
st.plotly_chart(fig_conf, use_container_width=True)
def create_detection_table(detection_data: Dict):
"""Create detailed detection table."""
if detection_data['total_detections'] == 0:
st.info("No detections to display")
return
# Convert to DataFrame
df = pd.DataFrame(detection_data['detections'])
# Format confidence as percentage
df['confidence_pct'] = df['confidence'].apply(lambda x: f"{x:.1%}")
# Reorder columns for better display
display_columns = ['id', 'class', 'confidence_pct', 'x1', 'y1', 'x2', 'y2', 'width', 'height', 'area']
df_display = df[display_columns].copy()
# Rename columns for better readability
df_display.columns = ['ID', 'Class', 'Confidence', 'X1', 'Y1', 'X2', 'Y2', 'Width', 'Height', 'Area']
st.dataframe(df_display, use_container_width=True)
# Download button for results
csv = df_display.to_csv(index=False)
st.download_button(
label="πŸ“₯ Download Detection Results (CSV)",
data=csv,
file_name=f"crack_detection_results_{int(time.time())}.csv",
mime="text/csv"
)
def main():
"""Main Streamlit application."""
# Header
st.markdown('<h1 class="main-header">πŸ” Tunnel Crack Detection</h1>', unsafe_allow_html=True)
st.markdown("**AI-powered crack and defect detection for tunnel infrastructure using YOLOv12-DINO**")
# Sidebar for model configuration
with st.sidebar:
st.header("πŸ› οΈ Model Configuration")
# Model loading section
st.subheader("πŸ“ Load Model")
# Check if default model exists
default_exists = Path(DEFAULT_WEIGHTS_PATH).exists()
if default_exists:
st.success(f"βœ… Default model found: `segment_defect.pt`")
if st.button("πŸš€ Load Default Model", type="primary"):
device = st.selectbox(
"Device",
options=["cpu", "cuda", "mps"],
index=0,
help="Select computation device",
key="device_default"
)
success, message = load_model(DEFAULT_WEIGHTS_PATH, device)
if success:
st.success(message)
else:
st.error(message)
else:
st.markdown(f'<div class="warning-box">⚠️ Default model not found at:<br><code>{DEFAULT_WEIGHTS_PATH}</code></div>',
unsafe_allow_html=True)
st.markdown("---")
# Alternative model upload
st.info("πŸ’‘ **Alternative:** Upload a custom model (up to 5GB)")
uploaded_file = st.file_uploader(
"Upload Model Weights (.pt file)",
type=['pt'],
help="Upload your trained YOLOv12-DINO model weights",
label_visibility="visible"
)
device = st.selectbox(
"Device",
options=["cpu", "cuda", "mps"],
index=0,
help="Select computation device",
key="device_upload"
)
if uploaded_file is not None:
# Show file info
file_size_mb = uploaded_file.size / (1024 * 1024)
st.success(f"πŸ“ File uploaded: {uploaded_file.name} ({file_size_mb:.1f} MB)")
if st.button("πŸ”„ Load Uploaded Model", type="secondary"):
# Show progress for large file processing
progress_bar = st.progress(0)
status_text = st.empty()
try:
# Save uploaded file temporarily with progress indication
status_text.text("πŸ’Ύ Saving uploaded file...")
progress_bar.progress(25)
with tempfile.NamedTemporaryFile(delete=False, suffix='.pt') as tmp_file:
tmp_file.write(uploaded_file.read())
tmp_path = tmp_file.name
progress_bar.progress(50)
status_text.text("πŸš€ Loading model...")
success, message = load_model(tmp_path, device)
progress_bar.progress(100)
status_text.text("βœ… Model loading complete!")
if success:
st.success(message)
else:
st.error(message)
# Clean up progress indicators
time.sleep(1)
progress_bar.empty()
status_text.empty()
except Exception as e:
st.error(f"❌ Error processing file: {str(e)}")
progress_bar.empty()
status_text.empty()
# Detection parameters
st.subheader("βš™οΈ Detection Parameters")
conf_threshold = st.slider(
"Confidence Threshold",
min_value=0.01,
max_value=1.0,
value=0.25,
step=0.01,
help="Minimum confidence for detection"
)
iou_threshold = st.slider(
"IoU Threshold",
min_value=0.01,
max_value=1.0,
value=0.7,
step=0.01,
help="IoU threshold for Non-Maximum Suppression"
)
image_size = st.selectbox(
"Image Size",
options=[320, 416, 512, 640, 832, 1024, 1280],
index=3,
help="Input image size for model"
)
# Model status
if st.session_state.model_loaded:
st.markdown('<div class="success-box">βœ… Model loaded and ready</div>', unsafe_allow_html=True)
else:
st.markdown('<div class="warning-box">⚠️ Please load a model first</div>', unsafe_allow_html=True)
# Main content area
col1, col2 = st.columns([1, 1])
with col1:
st.header("πŸ–ΌοΈ Input Image")
# Image upload
image_file = st.file_uploader(
"Upload Image",
type=['jpg', 'jpeg', 'png', 'bmp'],
help="Upload a tunnel image for crack detection"
)
if image_file is not None:
# Load and display image
try:
image = Image.open(image_file)
image_np = np.array(image)
# Display image
st.image(image, caption="Input Image", width=None)
# Image info
st.info(f"πŸ“Š Image size: {image.width} Γ— {image.height} pixels")
except Exception as e:
st.error(f"❌ Error loading image: {str(e)}")
return
# Detection button
if st.button("πŸ” Detect Cracks", type="primary", disabled=not st.session_state.model_loaded):
if st.session_state.model_loaded:
with st.spinner("Analyzing image for cracks and defects..."):
annotated_img, detection_data, summary_text = perform_detection(
image_np, conf_threshold, iou_threshold, image_size
)
# Store results in session state
st.session_state.last_detection = {
'annotated_img': annotated_img,
'detection_data': detection_data,
'summary_text': summary_text,
'timestamp': time.time()
}
# Add to history
st.session_state.detection_history.append({
'filename': image_file.name,
'detections': detection_data['total_detections'],
'timestamp': time.time()
})
else:
st.error("❌ Please load a model first")
with col2:
st.header("🎯 Detection Results")
if 'last_detection' in st.session_state:
detection_result = st.session_state.last_detection
# Display annotated image
if detection_result['annotated_img'] is not None:
try:
st.image(
detection_result['annotated_img'],
caption="Crack Detection Results",
width=None
)
except Exception as e:
st.error(f"Error displaying result image: {str(e)}")
# Display summary
st.markdown(f'<div class="detection-box">{detection_result["summary_text"]}</div>',
unsafe_allow_html=True)
else:
st.info("πŸ” Upload an image and click 'Detect Cracks' to see results")
# Additional tabs for detailed analysis
if 'last_detection' in st.session_state and st.session_state.last_detection['detection_data']['total_detections'] > 0:
st.header("πŸ“Š Detailed Analysis")
tab1, tab2, tab3 = st.tabs(["πŸ“ˆ Charts", "πŸ“‹ Detection Table", "πŸ“œ History"])
with tab1:
create_detection_chart(st.session_state.last_detection['detection_data'])
with tab2:
create_detection_table(st.session_state.last_detection['detection_data'])
with tab3:
if st.session_state.detection_history:
history_df = pd.DataFrame(st.session_state.detection_history)
history_df['timestamp'] = pd.to_datetime(history_df['timestamp'], unit='s')
history_df.columns = ['Filename', 'Detections', 'Timestamp']
st.dataframe(history_df, use_container_width=True)
# Clear history button
if st.button("πŸ—‘οΈ Clear History"):
st.session_state.detection_history = []
st.rerun()
else:
st.info("No detection history yet")
# Footer
st.markdown("---")
st.markdown(
"""
<div style='text-align: center; color: #666; padding: 1rem;'>
πŸ” <strong>Tunnel Crack Detection System</strong> |
Powered by <strong>Streamlit</strong> + <strong>YOLOv12-DINO</strong>
</div>
""",
unsafe_allow_html=True
)
if __name__ == "__main__":
main()