File size: 19,970 Bytes
ad19ccb d7df1b6 ad19ccb 3f3d51a d7df1b6 3f3d51a d7df1b6 3f3d51a d7df1b6 3f3d51a d7df1b6 3f3d51a d7df1b6 ad19ccb 3f3d51a d7df1b6 ad19ccb d7df1b6 ad19ccb d7df1b6 3f3d51a d7df1b6 ad19ccb 3f3d51a ad19ccb 3f3d51a ad19ccb d7df1b6 ad19ccb d7df1b6 ad19ccb 3f3d51a d7df1b6 3f3d51a ad19ccb d7df1b6 ad19ccb 3f3d51a ad19ccb 3f3d51a ad19ccb 3f3d51a d7df1b6 ad19ccb 3f3d51a ad19ccb 3f3d51a ad19ccb 3f3d51a d7df1b6 3f3d51a ad19ccb d7df1b6 3f3d51a ad19ccb 3f3d51a d7df1b6 3f3d51a d7df1b6 3f3d51a d7df1b6 3f3d51a d7df1b6 3f3d51a d7df1b6 3f3d51a d7df1b6 3f3d51a d7df1b6 3f3d51a d7df1b6 3f3d51a ad19ccb 3f3d51a ad19ccb d7df1b6 ad19ccb d7df1b6 ad19ccb 3f3d51a d7df1b6 ad19ccb d7df1b6 ad19ccb 3f3d51a ad19ccb 3f3d51a ad19ccb d7df1b6 ad19ccb d7df1b6 ad19ccb d7df1b6 ad19ccb d7df1b6 ad19ccb 3f3d51a ad19ccb 3f3d51a ad19ccb 3f3d51a ad19ccb d7df1b6 ad19ccb d7df1b6 3f3d51a d7df1b6 ad19ccb 3f3d51a d7df1b6 3f3d51a ad19ccb d7df1b6 ad19ccb 3f3d51a ad19ccb d7df1b6 ad19ccb d7df1b6 3f3d51a ad19ccb 3f3d51a d7df1b6 ad19ccb 3f3d51a d7df1b6 3f3d51a ad19ccb 3f3d51a d7df1b6 3f3d51a ad19ccb d7df1b6 3f3d51a ad19ccb 3f3d51a d7df1b6 3f3d51a d7df1b6 3f3d51a d7df1b6 ad19ccb 3f3d51a d7df1b6 ad19ccb d7df1b6 3f3d51a d7df1b6 ad19ccb 3f3d51a ad19ccb 3f3d51a d7df1b6 3f3d51a ad19ccb 3f3d51a d7df1b6 3f3d51a d7df1b6 3f3d51a d7df1b6 3f3d51a d7df1b6 3f3d51a d7df1b6 3f3d51a d7df1b6 3f3d51a d7df1b6 3f3d51a d7df1b6 3f3d51a d7df1b6 ad19ccb 3f3d51a d7df1b6 3f3d51a d7df1b6 3f3d51a d7df1b6 3f3d51a ad19ccb 3f3d51a ad19ccb d7df1b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
import gradio as gr
from huggingface_hub import InferenceClient
import pandas as pd
import json
import os
import time
from datetime import datetime
import traceback
# Working model configurations - These are verified to work with HF Inference API
MODEL_CONFIGS = {
"GPT-OSS 20B (Reliable)": {
"model_id": "openai/gpt-oss-20b",
"description": "Your current model - reliable for structured output",
"default_temp": 0.3,
"max_tokens": 256
},
"Mistral 7B Instruct (Fast)": {
"model_id": "mistralai/Mistral-7B-Instruct-v0.2",
"description": "Fast and efficient, good for large batches",
"default_temp": 0.4,
"max_tokens": 300
},
"Zephyr 7B Beta (Quality)": {
"model_id": "HuggingFaceH4/zephyr-7b-beta",
"description": "Good balance of quality and speed",
"default_temp": 0.35,
"max_tokens": 300
},
"OpenChat 3.5 (Creative)": {
"model_id": "openchat/openchat-3.5-0106",
"description": "More creative descriptions",
"default_temp": 0.5,
"max_tokens": 300
}
}
# Enhanced prompt templates for better clip-ready descriptions
PROMPT_TEMPLATES = {
"Clip-Ready Visual (15-30 words)": """You are an expert at writing ultra-concise, visual descriptions for CLIP models and image search.
For each business category, create a description that:
1. Is 15-30 words maximum
2. Focuses on VISUAL elements only (what you would SEE in an image)
3. Uses concrete, observable details
4. Avoids abstract concepts or services
5. Describes physical appearance, setting, or visual activity
Examples:
Category: "Car Rental For Self Driven"
Description: "rental car with keys, parked at pickup location, clean interior visible, rental company signage"
Category: "Mehandi"
Description: "henna artwork on hands, intricate patterns being applied, cones and design templates visible"
Category: "Photographer"
Description: "person with camera shooting, tripods and lighting equipment, studio setup with backdrops"
IMPORTANT: Respond with ONLY a JSON object in this exact format:
{"Category": "category name", "Description": "visual description"}
Do not include any other text, explanations, or markdown formatting.""",
"Standard Business (40-60 words)": """You are creating professional business descriptions for directory listings.
Generate descriptions that:
1. Are 40-60 words
2. Define the service clearly
3. Include key visual and contextual elements
4. Are suitable for yellow pages or business directories
Example format:
Category: "Photography Studio"
Description: "Professional photography space with lighting equipment, backdrops, and cameras. Photographer capturing portraits, events, or products. Studio setup with tripods, reflectors, softboxes. Clients posing for shots, reviewing images on screens."
IMPORTANT: Respond with ONLY a JSON object:
{"Category": "category name", "Description": "description text"}""",
"Your Original Prompt": """You are an expert at writing clear and visual descriptions for a business category keyword for a yellow pages or business listing website. Given a category keyword, generate a single, detailed description that defines its key visual elements, location, and context. Do not add artistic or stylistic flair. Ensure that the description is CLIP model ready and not too verbose.
IMPORTANT: You must respond with ONLY a valid JSON object in this exact format:
{"Category": "category name", "Description": "description text"}
Do not include any other text, explanations, or markdown formatting. Only output the JSON object."""
}
def extract_json_from_response(response_text):
"""Enhanced JSON extraction with better error handling"""
if not response_text:
raise ValueError("Empty response")
response_text = response_text.strip()
# Clean markdown formatting
if "```json" in response_text:
response_text = response_text.split("```json")[1].split("```")[0].strip()
elif "```" in response_text:
response_text = response_text.split("```")[1].split("```")[0].strip()
# Find JSON object
if "{" in response_text and "}" in response_text:
start = response_text.find("{")
end = response_text.rfind("}") + 1
json_str = response_text[start:end]
else:
json_str = response_text
try:
# Try to parse JSON
parsed = json.loads(json_str)
except json.JSONDecodeError as e:
# Try to fix common issues
json_str = json_str.replace("'", '"')
json_str = json_str.replace("\n", " ")
json_str = json_str.replace("\t", " ")
# Try again
try:
parsed = json.loads(json_str)
except:
# Last resort - try to extract description from raw text
if "description" in response_text.lower():
# Try to find the description part
lines = response_text.split('\n')
for line in lines:
if 'description' in line.lower() and ':' in line:
desc = line.split(':', 1)[1].strip().strip('"').strip("'")
if len(desc) > 10:
return desc
raise ValueError(f"Cannot parse JSON: {str(e)}")
# Extract description
description = (
parsed.get("Description") or
parsed.get("description") or
parsed.get("Desc") or
parsed.get("desc") or
""
)
if not description or len(description.strip()) < 10:
raise ValueError("Description is missing or too short")
return description.strip()
def process_single_category_with_fallback(
category,
model_name,
prompt_template,
max_tokens,
temperature,
top_p,
hf_token,
retry_count=3
):
"""Process with fallback to working model if primary fails"""
# Try primary model
try:
client = InferenceClient(
token=hf_token,
model=MODEL_CONFIGS[model_name]["model_id"]
)
system_prompt = PROMPT_TEMPLATES[prompt_template]
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"Category: \"{category}\""}
]
for attempt in range(retry_count):
try:
if attempt > 0:
time.sleep(1)
response_text = ""
# Try streaming
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
if hasattr(message, 'choices') and len(message.choices) > 0:
if hasattr(message.choices[0], 'delta') and hasattr(message.choices[0].delta, 'content'):
token = message.choices[0].delta.content
if token:
response_text += token
elif isinstance(message, str):
response_text += message
if not response_text or len(response_text.strip()) < 5:
raise ValueError("Empty response")
description = extract_json_from_response(response_text)
return response_text.strip(), description, model_name
except Exception as e:
if attempt == retry_count - 1:
raise e
except Exception as primary_error:
# Fallback to GPT-OSS-20B which we know works
if model_name != "GPT-OSS 20B (Reliable)":
try:
print(f"Primary model failed, falling back to GPT-OSS-20B: {str(primary_error)[:100]}")
client = InferenceClient(
token=hf_token,
model="openai/gpt-oss-20b"
)
system_prompt = PROMPT_TEMPLATES[prompt_template]
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"Category: \"{category}\""}
]
response_text = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
if hasattr(message, 'choices') and len(message.choices) > 0:
if hasattr(message.choices[0], 'delta') and hasattr(message.choices[0].delta, 'content'):
token = message.choices[0].delta.content
if token:
response_text += token
elif isinstance(message, str):
response_text += message
if response_text:
description = extract_json_from_response(response_text)
return response_text.strip(), description, "GPT-OSS-20B (Fallback)"
except Exception as fallback_error:
raise Exception(f"Both primary and fallback failed. Primary: {str(primary_error)[:100]}, Fallback: {str(fallback_error)[:100]}")
else:
raise primary_error
def process_csv_enhanced(
files,
category_column,
model_name,
prompt_template,
max_tokens,
temperature,
top_p,
output_format,
progress=gr.Progress()
):
"""Enhanced processing with better error messages and fallbacks"""
if not files or len(files) == 0:
return "Please upload at least one CSV file.", None, None
# Get HF token
hf_token = os.environ.get("HF_TOKEN") or os.environ.get("HUGGINGFACE_TOKEN")
if not hf_token:
return """β οΈ Error: HF_TOKEN not found. Please add your Hugging Face token as a Space Secret.
Go to: Space Settings β Secrets β Add 'HF_TOKEN'""", None, None
all_results = []
status_messages = []
output_files = []
for file_idx, file in enumerate(files):
try:
# Read CSV
df = pd.read_csv(file.name)
file_name = os.path.basename(file.name)
status_messages.append(f"π Processing file {file_idx + 1}/{len(files)}: {file_name}")
# Check column
if category_column not in df.columns:
available_cols = ', '.join(df.columns[:5])
status_messages.append(f"β οΈ Column '{category_column}' not found. Available: {available_cols}")
continue
# Get unique categories
categories = df[category_column].dropna().unique()
total_categories = len(categories)
file_results = []
for idx, category in enumerate(categories):
progress(
(file_idx * total_categories + idx) / (len(files) * total_categories),
desc=f"Processing: {category[:30]}..."
)
try:
raw_response, description, used_model = process_single_category_with_fallback(
category,
model_name,
prompt_template,
max_tokens,
temperature,
top_p,
hf_token
)
result = {
"Category": category,
"Description": description,
"Word_Count": len(description.split()),
"Model_Used": used_model,
"Raw_Response": raw_response,
"Status": "Success"
}
file_results.append(result)
all_results.append(result)
status_messages.append(f"β
{category[:30]}... ({len(description.split())} words)")
except Exception as e:
error_msg = str(e)
if "Request ID" in error_msg:
error_msg = "API Error - Try lowering temperature or using GPT-OSS model"
result = {
"Category": category,
"Description": f"[FAILED: {error_msg[:100]}]",
"Word_Count": 0,
"Model_Used": model_name,
"Raw_Response": "",
"Status": f"Failed"
}
file_results.append(result)
all_results.append(result)
status_messages.append(f"β {category[:30]}... - {error_msg[:50]}")
# Rate limiting
time.sleep(0.5)
# Save output files
if file_results:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
base_name = os.path.splitext(file_name)[0]
# Create DataFrame
output_df = pd.DataFrame(file_results)
if output_format in ["CSV", "Both"]:
csv_filename = f"output_{base_name}_{timestamp}.csv"
output_df.to_csv(csv_filename, index=False)
output_files.append(csv_filename)
if output_format in ["JSON", "Both"]:
json_filename = f"output_{base_name}_{timestamp}.json"
with open(json_filename, 'w') as f:
json.dump(file_results, f, indent=2)
output_files.append(json_filename)
# Summary
success_count = sum(1 for r in file_results if r["Status"] == "Success")
failed_count = len(file_results) - success_count
status_messages.append(f"""
π {file_name} Summary:
- Total: {len(file_results)} categories
- Success: {success_count} ({success_count/max(len(file_results),1)*100:.1f}%)
- Failed: {failed_count}
""")
except Exception as e:
status_messages.append(f"β Error processing {file_name}: {str(e)}")
# Create summary
if all_results:
total_success = sum(1 for r in all_results if r["Status"] == "Success")
total_failed = len(all_results) - total_success
summary = f"""## π― Processing Complete!
### Statistics:
- **Total Processed:** {len(all_results)} categories
- **Successful:** {total_success} ({total_success/len(all_results)*100:.1f}%)
- **Failed:** {total_failed}
### Details:
"""
status_text = summary + "\n".join(status_messages)
# Create preview DataFrame
preview_df = pd.DataFrame(all_results)[['Category', 'Description', 'Word_Count', 'Status']][:20]
return status_text, output_files, preview_df
else:
return "\n".join(status_messages), None, None
# Create Gradio interface
with gr.Blocks(title="Multi-Model Business Description Generator", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π Multi-Model Business Description Generator
Generate CLIP-ready visual descriptions using multiple AI models.
### Features:
- π€ **4 Different Models** - Choose the best for your needs
- π **3 Prompt Templates** - Optimized for different use cases
- π **Automatic Fallback** - Falls back to GPT-OSS if primary model fails
- πΎ **CSV & JSON Export** - Multiple output formats
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### π€ Input")
files_input = gr.File(
label="Upload CSV Files",
file_count="multiple",
file_types=[".csv"]
)
category_column = gr.Textbox(
label="Category Column Name",
value="category",
placeholder="Column name containing categories"
)
gr.Markdown("### π€ Model Configuration")
model_selector = gr.Dropdown(
label="Select Model",
choices=list(MODEL_CONFIGS.keys()),
value="GPT-OSS 20B (Reliable)",
info="GPT-OSS is most reliable, others may require fallback"
)
prompt_template = gr.Dropdown(
label="Prompt Template",
choices=list(PROMPT_TEMPLATES.keys()),
value="Your Original Prompt",
info="Choose based on desired output style"
)
gr.Markdown("### βοΈ Settings")
with gr.Row():
temperature = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.3,
step=0.05,
label="Temperature",
info="Lower = consistent"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.05,
label="Top-p"
)
max_tokens = gr.Slider(
minimum=64,
maximum=512,
value=256,
step=16,
label="Max Tokens"
)
output_format = gr.Radio(
label="Output Format",
choices=["CSV", "JSON", "Both"],
value="CSV"
)
process_btn = gr.Button("π Generate Descriptions", variant="primary", size="lg")
with gr.Column(scale=2):
gr.Markdown("### π Results")
status_output = gr.Markdown(
value="Results will appear here...",
label="Status"
)
results_preview = gr.Dataframe(
label="Preview (First 20 Results)",
headers=["Category", "Description", "Word_Count", "Status"],
wrap=True
)
files_output = gr.File(
label="π₯ Download Output Files",
file_count="multiple"
)
with gr.Row():
gr.Markdown("""
### π‘ Tips:
- **GPT-OSS 20B** is the most reliable model
- Use **Temperature 0.2-0.4** for consistent results
- **Clip-Ready** template gives 15-30 word descriptions
- If a model fails, it automatically falls back to GPT-OSS
### β οΈ Troubleshooting:
- **API Errors**: Try using GPT-OSS 20B model
- **Failed Categories**: Lower temperature to 0.2
- **Empty Responses**: Check your HF_TOKEN is valid
""")
# Process button
process_btn.click(
fn=process_csv_enhanced,
inputs=[
files_input,
category_column,
model_selector,
prompt_template,
max_tokens,
temperature,
top_p,
output_format
],
outputs=[status_output, files_output, results_preview]
)
if __name__ == "__main__":
demo.launch() |